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1  Technical Status Report 
The project achieved all key goals. This effort has accomplished work to show how to 
create real-time network of workstations (NOWs). 

1.1      Key technical achievements 
1. Developed predictable Myrinet communication for use in a real-time 

NOW. 

• Thesis: Predictability and Performance factors influencing the design 
of real-time messaging layers. S. Chakravarthi, MS. Thesis, 
Mississippi State University, 2000. 

• Achieved message transfer latencies of 30ps without requiring initial 
handshaking. 

• Developed Myrinet drivers tailored to provide deterministic DMA 
latencies to improve real-time performance. 

• Developed 1-copy message transfer using shared memory mapped to 
the Myrinet NIC. 

2. Developed the MSU-Kernel to provide a POSIX OS for real-time NOWs. 
The achievements include: 

• Published paper: Time-based Linux for Real-Time NOWs and MPI/RT. M. 
Apte, S. Chakravarti, A. Pillai, A. Skjellum, and X. Zan. In IEEE Real-Time 
Systems Symposium, Phoenix AZ, Dec 1999. 

• Developed a real-time scheduler that supports non-real-time tasks, 
hard real-time tasks, and greedy real-time tasks. 

• Utilized the processor's APIC timer to reduce scheduling granularity 
to 30ns. 

• Achieved scheduling overhead of no more than 10m s for 8K-byte 
messages. 

• Achieved message latency jitter of no more than 30ms. 

• Project report: A Real-Time Message Layer over Myrinet Networks. 
X. Zan, MS. Project Report, Mississippi State University, 2000. 

3. Developed and implemented an algorithm for deploying a globally 
synchronized clock in a real-time NOW. 

• Paper: A Fine-Grain Clock Synchronization Mechanism for QoS 
Based Communication on Myrinet. S. Chakravarthi, A. Pillai, J. 
Padmanabhan, M. Apte, and A. Skjellum. . Submitted to the 21st 

International Conference on Distributed Computing Systems 
(ICDCS-21). http://www.cs.msstate.edu/~tony/documents/Message- 
Passing/ICDCS2001-GClock.pdf 



• Paper: A Synchronized Real-Time Linux Based Myrinet Cluster for 
Deterministic High Performance Computing and MPI/RT. M. Apte, 
S. Chakravarthi, J. Padmanabhan, and A. Skjellum. Submitted to 
the Ninth International Workshop on Parallel and Distributed Real- 
Time Systems (WPDRTS 2001). 
http://www.cs.msstate.edu/~tony/documents/Message- 
Passing/WPDRTS-2001 .pdf 

• Devised an algorithm to synchronize clock in a NOW by sending 
periodic, low-overhead Myrinet messages with predictable latency 
over a single Myrinet switch. 

• The CPUs were synchronized to within ±5us of each other. 

• Demonstrated high-performance predictable zero-sided messaging 
using global schedules 

4. Developed an improved real-time scheduler for the Maruti hard real-time 
operating system at University of Maryland (UMD). 

• Utilized the APIC countdown timer to improve the accuracy of 
dispatching. 

• Developed a "double-interrupt" mechanism to pre-load the level-1 
cache in order to reduce the variability of dispatch times. 

5. Introduced a new parametric approach in Maruti for dynamic scheduling 
at UMD. 

• This scheduling technique allows the specification of a wide variety of 
timing constraints (e.g., ready time, deadline, communication 
constraint, mutual exclusion, together, and relative timing). 

• The dynamic scheduling capability of this approach allows the ability 
to add aperiodic tasks at runtime and to modify scheduling decisions at 
runtime depending on the characteristics of executing tasks. 

1.2      Key Publications 

Details regarding the results of this work are presented in the papers, thesis, and project 
reports attached with this report. 



2  Business Report 

2.1       Expenses: (4/1/96 - 12/31/99) 

Mississippi State University 
Salary 393,922.53 
Wages 34,376.61 
Fringes 86,105.66 
Travel 72,989.53 
Subcontract 446,150.00 
Contractual 44,028.36 
Commodities 1,616.33 
Equipment 58,906.98 
Overhead 225,280.00 
Total $1,363,376.00 

University of Maryland 
Salary and Wages 228,195.62 
Fringes 42,242.25 
Travel 8,863.19 
Commodities 8,608.99 
Equipment 15,219.00 
Other Direct Costs 4,824.14 
Overhead"1 138,196.81 
Total $446,150.00 



Time Based Linux for Real-Time 
NOWs and MPI/RT 

Manoj Apte, Srigurunath Chakravarthi, 
Anand Pillai, 

Anthony Skjellum, Xin Yan Zan 
Department of Computer Science and 

NSF Engineering Research Center 
Mississippi State University. MS 39762 
{manoj,ecap,anand,tony,xyz}@erc.msstate.edu 

Abstract 
The Real-Time Message Passing Interface 

(MPI/RT) is a communication layer middleware 
standard that is aimed at providing guaranteed 
Quality of Service for data transfers on high 
performance networks. It poses "middleout" 
requirements both on applications and on the 
operating system. In this paper, we consider the 
"middledown" issues by modifying a POSIX 
compliant operating system in order to support hard 
real time scheduling, a feature needed for efficient 
MPI/RT on real-time Networks of Workstations 
(NOWs). This paper describes the evolution of Turtle, 
a variant of RT-Linux, that will later support a 
prototype implementation of time-driven MPI/RT. 
Analysis, design approach, and results for Turtle are 
discussed. 

1. Introduction 

Commodity desktop machines are now powerful 
enough to handle several tasks concurrently through 
time sharing. It is feasible to use such workstations for 
performing Quality-of-Service (QoS) sensitive tasks 
while still allowing interactive tasks in the foreground. 
Integrated with a high-performance network 
supporting real-time protocols, one can also envision 
real-time Networks of Workstations (NOWs) used for 
distributed real-time computing, while serving as 
standard desktops. This paper describes the design of 
Turtle, a time-based operating system to manage 
synchronized real-time clusters of workstations. 

MPI/RT is an emerging real-time message passing 
standard, that may become the de-facto standard for 
high performance distributed real-time applications[3]. 
The standard prescribes the design for a middle-ware 
message passing layer to support message passing 

with guaranteed Quality of Service (QoS). The MPI/RT 
prograrrrming model is fairly distinct from the current 
practices in embedded and distributed real-time system 
design in being much more conducive to portability and 
providing hard real-time guarantees based on priorities, 
events and time. This poses several new requirements 
on the features provided by the underlying real-time 
operating system, which we aim to satisfy through 
Turtle. 

There are several real-time operating systems 
available commercially. VxWorks, pSOS, QNX, 
LynxOS and RT-Linux [1] are priority based systems. 
Microsoft's RealTo, RT-Mach [2], MARUTI and 
MARS are examples of systems scheduling tasks based 
on time. The RT-Mach resource reservation model 
comes closest to satisfying the requirements of 
MPI/RT. Turtle incorporates a hybrid form of the RT- 
Mach reservation model and the Rate Controlling 
model by Yau and Lam [4] into a cluster of Myrinet [5] 
based Linux workstations. Existing messaging layers 
over Myrinet can not, in general, provide predictable- 
latency message transfer in the presence of shared 
resources such as the PCI bus, RAM, and network 
switches. Our RT messaging sub-system provides 
bounded end-to-end message latency by eliminating 
resource contention. The messaging layer includes 
channel, QoS, and buffer abstractions which directly 
correspond to those in MPI/RT, to ensure a highly 
optimized middle-ware library. 

2. Design 

The current laboratory setup consists of 2 clusters of 
dual-capable 200 MHz Pentium Pro machines with 
128MB RAM, 2 GB SCSI disk, and Myrinet network 
using the LANai 4.0 cards. The Turtle system is based 
on the Linux 2.0.30 and RT-Linux 0.5. The Pentium 
APIC timer in one-shot mode is used for scheduling. 

2.1 Turtle Scheduler 

The Turtle scheduler incorporates a novel real-time 
scheduler based on the Rate controlled scheduling 
model by Yau and Lam [4], and the RT-Mach 
reservation model [2]. The scheduler is designed to 
allow concurrent execution of real-time tasks, and 
Linux processes which are run as best-effort. The Linux 
kernel is guaranteed a minimum QoS to ensure the 
workstation allows interactive usage. 

Turtle provides a matching kernel level API for 
MPI/RT time-driven channels. All hard real-time tasks 
request QoS in terms of start and end time, period, 
computation time, and the deadline with respect to start 
of the period. The QoS is a contract between the task 
and the scheduler. Hence, once a task is given its 
requested computation time,  its critical deadline is 



updated to the next period. The scheduler prioritizes 
tasks based on critical deadlines, thus ensuring that a 
misbehaving task does not affect QoS guarantees for 
other tasks. Such temporal isolation is critical for real- 
time scheduling on COTS systems that show non- 
deterministic behavior. 

In addition to its requested QoS, the Linux kernel is 
treated as a special greedy task, that is given extra 
computation time as long as there are no other 
READY tasks. Efforts are underway to support more 
than one greedy real-time tasks that may request extra 
computation time as a multiple of some optional time 
quantum during slack time. 

2.2 Myrinet Real-Time Messaging Layer 

The LANai network co-processor is configured 
with a specialized Myrinet Control Program (MCP) 
adapted for QoS-sensitive behavior. PCI bus 
contention from non-real-time traffic is eliminated by 
performing "blocking" PCI DMA, i.e. disallowing 
potential PCI bus contenders from being scheduled on 
the CPU during the transfer. 

The Turtle cluster maintains a globally 
synchronized master-slave clock over Myrinet that 
enables high performance parallel applications to take 
advantage of synchronized persistent communications. 
It also enables the scheduling algorithm to pre-plan 
data transfers to avoid contention at the switches, thus 
ensuring consistent high bandwidth. 

The Myrinet messaging layer provides an interface 
consistent with the MPI/RT standard. 

3. Results 

The Turtle scheduler improves interrupt latency, by 
emulating the 8254 timer for Linux. The scheduling 
overhead is maintained between 4 and 16 us, With an 
average of 6.5ns. The system was tested for up to 12 
real-time tasks without failure. It can support a task 
period as low as 70us. 

Guaranteed message passing latency is achieved by 
the "blocking" PCI DMA transfer. Eg. A 2KB data 
transfer from the host "memory to network buffers is 
bound by 20us; No such hard upper-bound can be 
established for a traditional non-blocking DMA. 

Maximum error in the slave clocks is bound within 
±4us. With this set-up we measured message passing 
latency for 12 bytes messages to be guaranteed 
between 6 and 13 us a$ shown in Figure 1. 
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Figure 1: Message Latency. 

4. Conclusions 

The Turtle system is well suited as the base for a 
high performance implementation of the MPI/RT 1-0 
library. MPI/RT channels can be directly abstracted as 
real-time tasks with an equivalent QoS. The system 
takes advantage of the time-driven paradigm to 
eliminate the need for explicit synchronization 
primitives and the associated overheads. Policing of 
PCl DMA transfers avoids contention with non-real- 
time traffic. Turtle maintains a fine-grained global 
clock using real time tasks. Resource contentions in the 
messaging system are avoided by synchronizing over 
the global clock. 

The project also demonstrates the feasibility of using 
commercial desktop systems for hard real-time 
computation. The experience gained will help identify 
bottlenecks in current commodity hardware that are 
non-conducive to real-time applications. 
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Abstract 

Clock synchronization is a fundamental requirement for any real-time distributed system operating with 

global schedules. This paper describes the design and implementation of a high accuracy (±4 (is) global 

clock on a Myrinet [4] gigabit/s system area network of PCs with considerably low software overheads. 

The global clock is based on a master-slave internal clock synchronization scheme [15]. A novel approach 

has been adopted to improve synchronization accuracy. The programmability of the Myrinet interface card 

and the presence of an on-board Real Time Clock [4] have been utilized to counter the undesirable effects 

of unpredictability in the latency of clock messages. The resulting synchronization facilitates global 

scheduling of distributed real-time tasks, and provides a framework to build support for Quality of Service 

in distributed high-performance environments. 

1      Introduction 

Coscheduling and minimization of network contention are key to high performance cluster computing. 

Coscheduling is possible if a global clock is maintained across all nodes in a cluster. Maintaining such a 

global clock is a nontrivial task, since variation in temperature and pressure changes the natural frequency 

1 This work was funded in part by DARPA, US Navy TASP, and by the National Science Foundation. 
2 Corresponding Author. Phone: 662 325 8435. Fax: 662 325 8997. Email: tony@hpcl.cs.msstate.edu 



of crystal-based oscillators. The difference in clock frequencies of individual nodes is termed drift. The 

resulting difference in the absolute clock values is called skew. A clock synchronization mechanism must 

correctly estimate the drift and skew of the local clocks to maintain a virtual global clock. This paper 

describes the design and implementation of a high-accuracy internal clock synchronization mechanism on 

the high-speed Myrinet [4] network. Internal clock synchronization [11] is synchronization of clocks with 

respect to one another but not with respect to the outside world. It is achieved by using a master-slave 

mechanism. 

Host 

Interface 

Switch 

Interface 

Host 

Host 

Interface 

Low latency worm-hole switch 

1.28 Gigabit/s duplex links 

Switch 

Interface 

Host 

Programmable LANai interface consists of: 
LANai processor 

- SRAM 
DMA engines 

- Real Time Clock 

Figure 1: Myrinet network showing NIC and components 

Myrinet is a gigabit/sec system area networking technology that is widely used in distributed high- 

performance computing. Figure 1 shows the key components of a Myrinet network: 1. A programmable 

Network Interface Controller (NIC) with the LANai processor, SRAM, and a Real Time Clock (RTC), and 

2. Source routed cut-through Myrinet switches. So far, Myrinet has been primarily used for high- 

performance communication. Popular messaging layers such as GM [12], FM [13] and BIP [14] are 

designed for low-latency and high-bandwidth, with no particular support for Quality of Service or real-time 

communication. FM QoS [6] is the only known messaging layer providing predictably low latencies 

between network interfaces across a Myrinet network of which we are aware. 



Myrinet worm-hole switches have predictably low fall-through latencies of the order of 500 ns [4]. 

However, the presence of contending traffic at a switch can cause unacceptably high jitters in latency [6]. 

Thus the key to enabling predictable communication across a worm-hole routed network such as Myrinet 

lies in generating conflict-free schedules. This directly necessitates building a global view of time across 

the network. This global view of time has to be sufficiently fine-grained and accurate to facilitate useful 

utilization of Myrinet's high bandwidth and low latency. Further, the mechanism that implements the 

global view of time should have acceptably low overheads to achieve acceptable performance. 

This paper describes a global clock implementation in software that meets the above requirements. The 

implemented global clock is already being used as a vital component of BDM-RT [5] - a low-level real- 

time Myrinet messaging layer. The key contribution is that this high-accuracy clock can pave the way for 

QoS based communication with predictable messaging latencies over Myrinet. 

The rest of the paper is organized as follows: Section 2 presents the problem of clock synchronization and 

viable solutions in high-performance distributed environments. Section 3 describes our approach and 

design. Section 4 presents results and analysis of these results on a 8-node, 1-switch Myrinet network . 

Section 5 concludes the paper and presents planned improvements and future work. 

2      Synchronization in high-performance environments 

Algorithms that solve the Byzantine general's problem [11] require communication that grows as 9(n2) 

with respect to the number of clocks involved in the synchronization. Hence, these algorithms do not scale 

well with the network size and can in general be categorized as having unacceptably high communication 

overhead for use in high-performance environments. Hardware based clock synchronization using GPS 

systems [16] is a viable alternative, but is usually too expensive specially for large networks. 

In a Myrinet based the network of PCs, the problem translates to synchronizing either the host clocks or the 

on-board LANai Real Time Clocks (RTC). Synchronization of LANai RTCs helps in generating conflict- 

free schedules for the link traffic. By conflict free, we mean that no packet will be scheduled to arrive at a 



Myrinet switch (see Figure 1) with the same outgoing port as another packet that is currently falling 

through the switch, thus eliminating any waiting time at the switch. FM QoS achieves synchronization at 

the Myrinet interface by building a global view of time using network feedback. While this mechanism 

enables conflict-free scheduling of messages at the network interface, synchronization is still absent at the 

host level. That is, the resulting synchronization can not by itself be used to implement global CPU 

schedules for host-to-host synchronization nor to guarantee end-to-end QoS. 

An alternate synchronization scheme is to synchronize the host clocks (on which CPU schedules are based) 

instead of the on-board clocks at the network interface. This latter mechanism mainly facilitates the 

implementation of global CPU schedules for distributed tasks, and can also ensure conflict-free link 

schedules if protocol processing delays are predictable. In other words, if the time spent by a message at the 

sender's node before being sent on the network is predictable, the host clock can itself be used to schedule 

link traffic. 

We chose to implement host-level synchronization mainly because of the following advantages: 1. It 

facilitates global scheduling of real-time channel tasks [10]. 2. On our platform, host clocks are more fine- 

grained (32-bit 5 ns counters) than the on-board RTCs (32-bit 500 ns counters). 3. We have developed a 

real-time messaging layer BDM-RT [5] that meets the above-mentioned protocol processing requirements 

to ensure conflict free link schedules. 

3      Our Design 

Our algorithm is based on a master-slave synchronization scheme. One node in the network is designated as 

the master node and the rest as slave nodes. The master periodically broadcasts its clock value to each of 

the slaves. Each slave constructs a virtual clock based on the received master clock values. This scheme 

scales well because the number of clock message transfers grows as 9 (n) with the number of nodes in the 

network. Additionally, the relatively low bandwidth and processing time required for this algorithm is 

suitable for high-performance environments. 



3.1      Integrity of clock messages 

It is well known that the accuracy of slave clocks is limited by the variation in the time taken to transfer 

clock messages [7]. More specifically, if the latencies of individual clock messages are bounded by T^ 

and Tmax, there is potentially an error of (Tmax-Tmin) units in the master's clock value accessed by a slave. 

That is, the master's clock reading, Tmasler, at the instant usable by the slave can be represented as: 

Tmaster = Tm + Tmjn + A (]) 

Where 

Tm is the master clock's time-stamp carried by the clock message, 

Tnjn is the theoretical minimum latency incurred by the clock message, 

O^ASCT^-T^Xand 

T^ is the theoretical maximum latency incurred by the clock message 

The inaccuracy of the slave clock's reading of the master clock is therefore at least A units of time. Studies 

conducted by us on the predictability of host-to-host latency on a Myrinet network [1 ] revealed that latency 

variation (jitter) is rather high compared to the absolute latency of messages on high-performance 

messaging layers. This is largely attributed to the unpredictable data transfer time between the host and 

LANai memory across a shared bus. For example, using periodic messages of length 32 bytes with BDM, 

our non real-time messaging library on Linux [9], jitters as high as 300 usec (with no guaranteed bound) 

were observed [5] [9]. This is rather high compared to the average latency of 30 u,sec. 

The key to improving global clock accuracy in a master-slave scheme thus lies in improving the accuracy 

of remote clock (master clock) accesses. One way of doing this is to improve the predictability of clock 

message latencies, thereby reducing A. This method is rather difficult to implement on commodity 

platforms given the various extraneous factors (such as contention of shared resources, scheduling delays, 

variation in traffic load, etc.) influencing the predictability of end-to-end latency. An alternate solution is 

to bound, if possible, the value of A with relatively higher accuracy than the variation of A itself. The next 
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sub-section describes how A can be estimated with reasonably high accuracy on any Myrinet messaging 

sub-system, and discusses our implementation. 

3.2      Estimation of message latency 

The actual delay incurred by a clock message is measured by the messaging subsystem and is made 

available to the slave at the time of receipt of the clock message. By recording delays at the various stages 

of protocol processing, the master clock is made to "keep ticking" while in transit to the slaves. Figure 2 is 

Protocol headers Master's host clock reading Delays 

Figure 2 Clock message packet 

a schematic representation of the clock message sent by the master at every re-synchronization cycle. 

Barring the protocol headers, clock messages mainly contains two fields of information: The master's clock 

value (Tra ), and the protocol processing delays encountered by the clock message (Dm). 

To understand how the delays are recorded, the typical stages involved in the transfer of messages on a 

Myrinet network are summarized here. On the sender's side, these constitute: 1. Protocol processing at the 

host, 2. Data transfer between host and LANai on-board buffers, 3. Protocol processing by the Myrinet 

Control Program (MCP) at the network interface, and 4. Network DMA of message to remote network 

interface. On the receiver's side, the stages are as follows : 1. Network DMA to receive a message, 2. 

Protocol processing and buffering of received message, 3. Transfer of message to host memory, and 4. 

Protocol processing by the host library. 

Host software 
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APIC timer and 

( 
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We now describe how to compute Ln - the network latency. In the absence of any extraneous traffic during 

the broadcast of clock messages, L„ equals the total switch fall-through time. Assuming S as the number of 

switches traversed by a clock message, and a constant fall-through time, L^,,, of 0.5 usec [4], the above 

equation can be rewritten as follows: 

Tester = Tm + Dra + (Tsn2-Tsnl) + (S*Lswitch) (3) 

Our current implementation ensures that conflicting Myrinet traffic is not scheduled during clock re- 

synchronization periods. Hence we use equation 3 to calculate Traaster. Because of this simplification, an 

additional inaccuracy is introduced in the measurement of Tsnl. Tsnl should ideally be the RTC timestamp 

when a clock message shows up at the slave's LANai interface. However, the slave MCP typically runs in 

an infinite loop and checks for messages ready to be received only periodically in its activity loop. Because 

of this polling delay, a certain amount of time may have elapsed before the MCP detects that a message is 

ready to be received. This elapsed time cannot be accounted for using Equation 3. 

Equation 2 can be used to eliminate this inaccuracy, and to operate without any restrictions on conflicting 

Myrinet traffic. L„ can be calculated by the master node's MCP by measuring the actual amount of time it 

takes to DMA a clock message. This will include delays at switches, and any polling delays at the slave 

node. Implementation of this will require an extra message to transfer the value of L„ from the master to the 

slave. This is envisioned as future work. 

3.3      Slave virtual clock algorithm 

Upon calculation of the master's clock value, the slave updates its virtual clock based on the current virtual 

clock value and the computed master's clock value. The algorithm used to compute the slave's virtual clock 

to be used until the next re-synchronization cycle is briefly described in this section. One of the primary 

goals that governed the choice of our algorithm was minimizing the computation overhead. The algorithm 

is also tolerant to faults arising from missed clock messages. 
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The availability of the on-board Real Time Clock (RTC) at the Myrinet interface is crucial to the ability to 

record processing delays. Additionally, the RTC can be memory-mapped to host memory, making it 

accessible directly from the host. Figure 3 illustrates this. Let us denote the master's host-clock with C^ , 

the master's RTC at the network interface with Cm,, the slave's host-clock with Csh, and the slave's RTC 

with Csn. At every re-synchronization cycle, the master clock task reads off C^ and C,™ consecutively with 

no intervening delays. Let this time be T^ by Cmh and T^ by C«. 

The clock message is constructed by the host library with the field Tm equal to T^, and Dm equal to T™,. 

After all protocol processing at the master has been done, the sender's Myrinet Control Protocol (MCP) is 

ready to DMA the message on the network. At this moment, let the Q™ reading be T^. The field Dm is 

overwritten with (T^ -T^O, i.e. the sum of all delays incurred at the master node. 

At the slave node, the MCP reads off Csn at the beginning of receipt of every message. Let this value be Tsnl 

for the clock message. The clock message is fully received and stored on LANai SRAM until the slave 

clock task is ready to pull it off the buffer. After the slave task has copied the clock message to host 

memory, it reads off CSh and Csn in succession with no intervening instructions. Let these timestamps be 

Tsiav<: and Tsn2. The master's clock value at this instant (i.e., when Csh reads Tsiave) can be calculated as 

follows: 

Tmasto = Tm +Dm +(Tsn2-Tsni)+ Ln (2) 

Where L„ is the network latency incurred by the clock message. The value of Tmaster computed as above is 

typically inaccurate because of inaccuracies in the measurement of T^ (on which Dm depends) and Tsn2. 

As described above, both T^i and Tsn2 involve reading the value on the on-board RTC from the host 

processor. This operation occurs across the PCI bus and inherently induces an inaccuracy (empirically 

measured to be approximately 2 u.s on our architecture testbed). 
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For simplicity let us assume that each slave constructs a virtual clock by assuming a constant drift rate 

between the master and its clock between consecutive re-synchronization cycles. At any instant in the n,h 

re-synchronization interval (i.e., between the n* and the (n+l)th clock message broadcasts), the virtual clock 

at a slave can be extrapolated as: 

Tv = C + 8n*(Tsh-Tsh
n) - e*(Tsh - Tsh

n)/Ps (4) 

Where 

Tv is the value of the synchronized virtual clock at a slave, 

C is a constant that corrects the boot-up time offset between the master and slave clock, 

8n is the computed relative drift between hardware clocks of a slave and the master for that period, 

Tsh is the reading of the slave's hardware host clock, 

Ps is the synchronization period in slave time units, 

Tsh
n is the reading of the slave's hardware host clock at the time of the n,h re-synchronization, and 

e is the error in the synchronized virtual time at the time of the n,h re-synchronization. 

The second expression on the right side of the above equation corrects for the difference in clock 

frequencies of the master and slave clocks. The third expression amortizes the error at the previous 

synchronization over the subsequent synchronization period and ensures convergence of the synchronized 

virtual clock to the master clock. 

C and 8n are computed based on the master clock values received and the local slave clock reading at the 

time of receipt by the slave task. Let Tmaster
n represent the value of the master clock computed using 

equation 2 (or equation 3, as the implementation may be) for the n"1 re-synchronization master clock 

message. Let the value of the slave hardware clock at the instant of receipt of the n* master clock message 

KpT       n ut   A slave.  • 
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Then, C is found by computing the difference between the master and slave clock readings for the first 

synchronization cycle, and remains constant thereafter. That is, 

*- = 11 master   " -t slave ) ^   ' 

5n is recalculated at every re-synchronization cycle based on the relative drifts of the master clock and the 

local slave clock. 

8n = (Tmaster" " Tmaster"   )/(Tsiave   ~ TsiaVe     )        for n>l 

8,= 1 (6) 

e = Tv" - Tmastcr", where Tv
n is synchronized virtual time at the time of the n* re-syncronization and 

extrapolated based on the clocks' state at the (n-l)"1 to n"1 re-synchronization intervals. 

In order to induce fault tolerance to missed clock messages at the slave and to decrease the undesirable 

effect of sporadic transmission errors on the virtual clock, the actual algorithm used to compute 8n is 

slightly different as compared to the one described by equation 4. 

Instead of assuming a constant drift rate between two consecutive re-synchronization intervals the drift rate 

is assumed constant and averaged over a longer sliding window of time. The number of synchronization 

periods the window spans is called the "window size." At each re-synchronization the window size 

increases by one. When the size of the window reaches a maximum, W^, the windows slides forward such 

that the size of the window is now W^,,. To maintain some history of drift the window is not allowed to 

slide forward completely and reach zero size. Relative drift, 8n, is computed within this window as, 

5„ = (r_r-rMj/(rslm-rslavc) (?) 

where, 

T°^» is me master clock time at the beginning of the current window, and 
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Tslm is the slave host time at the beginning of the current window. 

The averaging smoothes out isolated erroneous clock messages and longer window sizes increase this 

smoothing effect. Clock behavior and hence the frequency changes over time depending on room 

temperature and other factors. If, instead of a sliding window, a stationary enlarging window is used or if a 

long window size is chosen, then the effect of isolated erroneous clock messages will affect the 

synchronized virtual clock longer, but to a monotonically diminishing extent. Further, recent changes in 

relative drift between master and slave will take longer to correct the synchronized virtual clock. Hence the 

parameters of the sliding window should be chosen carefully. 

In our implementation the window does not slide continuously as to achieve that, the clock status at every 

re-synchronization needs to be stored in memory, which is an overhead. 

4      Experiments, Results and analysis 

4.1 Hardware and Software Configuration 

All experiments have been performed on an eight node cluster connected by Myrinet. Each node consists 

of a Pentium Pro 200 MHz processor with Intel FX440 motherboard. A single 32 bit PCI bus (33 Mhz) is 

shared by Ethernet, Myrinet and SCSI interfaces. The Myrinet PCI interface consists of the LANai 4.x 

processor with 1MB of SRAM. The operating system used is Linux 2.0.30. The Myrinet network is driven 

by the BDM-RT messaging library. This configuration represents a typical high performance cluster 

composed of commercial-off-the-shelf (COTS) desktops. The newest Intel processors and Myrinet can 

utilize all the results shown here. 

4.2 Synchronization Accuracy 

The accuracy of clock synchronization can be computed by recording the deviation between virtual global 

clocks maintained by the slaves and the master clock at regular intervals. In our experimental setup, we 

measure the deviation between the master clock and the global clock at every resynchronization period. 
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This approach ensures capturing the worst case skew, since the global clock in each slave is expected to 

have maximum deviation from the master clock just before re-synchronization. 
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Figure 4: Deviation from Master Clock (Nanoseconds) for all slaves 

The global clock module runs in each of the slaves at every resynchronization interval. It is instrumented to 

record the deviation between the global clock time and the master clock time computed using Equation 3 

on the received master clock message, before executing the virtual clock algorithm (Equation 4). Apart 

from the deviation and the resynch interval count, other metrics such as the drift between the master and 

slave hardware clocks, and the time the clock message waited in the slave's LANai before being consumed 

by the host are also stored. 

At this point, it is important to note that the deviation as measured above gives only an approximate value 

of the accuracy of the global clock. Ideally, accuracy should be computed using the deviation between 
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exact values of the global clock and the master clock. In our setup, we use an estimated value of the master 

clock , because of the unavailability of an external mechanism to access its exact value at the slave nodes. 

Hence, the measured accuracy is associated with an error equal to the error in the estimation of the master 

clock value at the slave. 

Figure 4 shows a sample of the deviation for each of the 7 slave nodes over 2500 re-synchronization 

periods with a resynchronization interval of 1 second . All the global clocks are within ± 5|isec of the 

master clock at any instant of time. The table below shows the drifts between uncorrected hardware clocks 

of each slave with respect to the master. It is seen that our algorithm copes well with a range of drifts to 

ensure synchronization within ± 5 |j.sec of the master. 

Slave Uncorrected Drift (ppm) 

Slave 1 120 

Slave 2 36 

Slave 3 103 

Slave 4 91 

Slave 5 18 

Slave 6 58 

Slave 7 52 

Table 1: Measured drift between hardware clocks of slaves and the master 

4.3      Optimizing the resynchronization interval 

One of the primary goals of our clock synchronization algorithms is to get maximum accuracy while 

incurring as low an overhead as possible. Increasing the resynchronization interval reduces the overhead on 

network and CPU resources. However, it is expected that increasing the resynchronization interval would 

result in a decrease in the accuracy of the global clock due to error accumulated from uncorrected drift. 
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The network overhead associated with the clock synchronization algorithm is measured as the ratio of the 

time spent on sending clock messages to the clock resynch period. The time spent by the master for 

broadcasting its timestamp was calculated by measuring the RTC timestamps just before and after the 

broadcast and taking their difference. Our experiments show that this time is about 32.5 uS. The estimated 

maximum CPU time required is 80u,s. 

The following table shows the worst case deviation of the clocks and the corresponding network and CPU 

overheads for resynchronization periods of 100ms, Is, lOsec, and 30sec. 

Period Minimum 

Deviation (ns) 

Maximum 

Deviation (ns) 

Network Overhead 

% 

CPU Overhead 

% 

100ms -4831 4783 3.25xl0"2 8x10" 

lsec -4174 4969 3.25xl0"J 8x10-' 

lOsec -4583 5069 3.25x10" 8x10" 

30sec -8602 8835 1.08xl0"4 2.7xl0"2 

Table 2: Clock error and overhead for various synchronization periods 

It is observed that increasing the resychronization period has no noticeable effect on the accuracy for the 

periods studied. Our reasoning for this behavior is that for the range of periods studied, the error 

accumulation due to uncorrected drift during the period is insignificantly small compared the error in 

estimation of the master clock value. In other words, the inaccuracy is primarily because of measurement 

errors in reading the exact master clock value and the estimates for the synchronization message. 

4.4      Fault tolerance 

As mentioned earlier, the current design and implementation is tolerant to faults arising from transmission 

errors and occasionally missed clock messages, because of the averaging scheme used at the slaves. The 

primary shortcoming of master-slave synchronization algorithms is the threat of failure of the master node. 

Although, our current implementation does not cope with outage of the master node, the design makes it 
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feasible to add this fault-tolerance. Certain features of the current design make it fairly straightforward to 

designate a slave node to take-over as the master when required. For example, it is transparent to the 

scheduler and operating system whether the current node is a master or slave because both these modules 

are scheduled as periodic tasks with identical task parameters. Also, the master and slave modules use 

identical MCP code, thus making it simple for a node to switch between the roles of a master and slave. 

The implementation of master fail-over is planned as future work. 

5      Conclusion and future work 

The need for a high-accuracy global clock for real-time messaging and coscheduling on a distributed 

system was seen as the motivation for the work presented in this paper. Our goal was to design and 

implement a high-accuracy, low-overhead internal global clock on the high-speed Myrinet network. This 

was achieved by using a master-slave algorithm with a novel technique of recording protocol-processing 

delays encountered by clock messages. The resulting design can be implemented on any Myrinet-based 

messaging layer. 

We achieved ± 5usec accuracy in an 8-node Myrinet cluster, incurring CPU and bandwidth overheads in 

the range of 0.03% to 0.07%. The algorithm is tolerant to transmission faults and missed clock messages. 

Further design improvements are planned to introduce master node fail-over and to reduce the incurred 

overhead. It is also planned to verify the exact accuracy of our global clock by using an external GPS based 

clock, and to further improve the accuracy by implementing the more exact scheme (Equation 2). 

It is envisioned that this low-overhead clock synchronization will pave the way for QoS based high- 

performance Myrinet messaging layers, and will facilitate fine-grain global synchornization of distributed 

tasks. 
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Abstract 

This paper describes the design and implementation of a real-time cluster of PCs that 
provides globally synchronized scheduling and predictable messaging passing. A high-accuracy, 
fine-grain global clock implementation has been closely coupled with a time-based scheduler to 
facilitate finely synchronized global scheduling across the cluster. A real-time messaging layer 
provides predictable communication latencies over the interconnecting Myrinet network. This 
system provides a solid framework for QoS based real-time communication, and in particular 
facilitates efficient layering of high-performance real-time distributed middleware such as 
MPI/RT. We present experiments and results to demonstrate the degree of predictability and 
synchronization achieved on an 8-node Myrinet cluster. 

1     Introduction 

It is well known that clusters of commodity workstations are becoming a popular low 
cost alternative to super-computers for high-performance distributed computing [3]. Such systems 
also offer a higher degree of reliability through replication, better scalability, and portability. As 
distributed algorithms expand their scope to online computational simulation of complex 
phenomenon, data acquisition and analysis, telecommunications, multimedia and avionics, a new 
requirement is seen to emerge: The correctness of such applications depends not only on the 
result, but also their timeliness. To ensure correct operation, such real-time applications impose 
certain end-to-end Quality of Service (QoS) requirements on message delivery. These 
requirements can only be satisfied by appropriate design of the underlying architecture, operating 
system and middleware. 

High performance distributed systems are not necessarily deterministic in their behavior. 
Most performance enhancements are aimed at improving the average case, resulting in a large 
gap between average and the worst case. A system required to provide precise end-to-end QoS 
guarantees is hence unable to take advantage of such enhancements. Determinism for guaranteed 
QoS and high performance are thus often complementary requirements. The system must be able 
to provide the application with an appropriate balance of determinism and average performance 
as dictated by its QoS requirements. 

To provide temporal guarantees, individual tasks of a distributed real-time application 
must share a common notion of time. The worst-case guarantee for any time-based QoS is 
directly affected by the accuracy of the global clock. In case of non-real time parallel algorithms, 
the performance is severely affected by the scheduling strategy used at each node if the 
applications involve significant communication. Local scheduling that is not based on a global 

* This work was funded in part by DARPA, US Navy TASP, and the National Science Foundation 
# Corresponding Author. Phone: 662 325 8435. Fax: 662 325 8997. 
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scheme results in low CPU utilization and excessive communication and context switching 
overheads. Gang scheduling and co-scheduling alleviate this problem by providing simultaneous 
access to all cluster resources for each job [10]. A fine-synchronized global clock enables the 
system to implement global schedules with no extra overhead for context switching entire 
applications concurrently improving their scalability and responsiveness [11]. 

This paper addresses all of the above requirements, and presents an architecture and 
implementation of a Myrinet-connected [8] cluster of workstations designed to support high 
performance distributed real-time applications. The cluster is based on a commodity operating 
system (Linux) with real time enhancements (Turtle) [1]. The system features a novel Myrinet 
driver that is adapted to provide predictable end-to-end communication and a high-accuracy, low- 
overhead global clock. 

The rest of this section describes past work in related areas and presents our approach to 
solving the problems of synchronization, real-time scheduling and communication on Myrinet. 
Section 2 briefly describes the clock synchronization technique used to achieve high-accuracy. 
Section 3 discusses the integration of the global clock with the individual CPU schedulers. 
Section 4 describes the design and implementation of a real-time messaging layer, BDM-RT. 
Section 5 presents experiments and results that demonstrate a high degree of predictability in 
message passing and tight synchronization among cluster nodes. Section 6 offers conclusion and 
presents a synopsis of our future goals. 

1.1 Related work in cluster computing 
Myrinet [8] has traditionally been used for high-performance computing, with little or no 

emphasis to providing QoS and/or real-time guarantees. The primary challenge associated with 
using Myrinet for real-time communication is to ensure bounded fall-through times across the 
worm-hole switches. Myrinet worm-hole switches have predictably low latencies, that are less 
than a micro-second only in the absence of switch contention. FM-QoS [17] is a messaging layer 
that overcomes switch contention by building a global view of time among LANai interfaces [8] 
in the Myrinet network. FM-QoS uses feedback from the actual latency incurred by specially 
introduced traffic, to correct for drifts among Real Time Clocks (RTCs) on the individual LANai 
interfaces. The resulting synchronization enables conflict-free scheduling of link traffic with 
predictably low latencies between LANai interfaces. 

However, resolving switch contention alone is insufficient for ensuring end-to-end 
latency predictability of Myrinet messages. Contention of shared resources within the sending 
and receiving nodes is essential. These shared resources comprise the host CPU, the LANai 
processor, the inter-connecting bus (i.e. PCI bus), limited network buffer space, and the on-board 
DMA engines [8]. 

A model for end-to-end periodic real-time communication on Myrinet has been reported 
by Zhang et al. [19]. A two-level scheduling scheme creates a virtual, slower network for each 
real-time application across the network. This model is particularly suited for open systems 
because it does not require intimate knowledge of the timing characteristics of the system, or 
analysis of global schedulability. The primary advantages of this model are its high resource 
utilization and simple admission criterion. Implementation of this model was reported as on- 
going work, citing the implementation challenges involved [19]. 

1.2 Our approach 
Our approach into providing a distributed real-time cluster is largely dictated by the 

requirements of MPI/RT [6] real-time channels. In particular, our system permits efficient 
layering of MPI/RT time-based channels with full QoS capability. A channel in MPI/RT is a 
persistent logical path for unidirectional message transfer between two endpoints (processes). 
MPI/RT enforces early-binding semantics, wherein an application specifies desired QoS and 
system resource requirements before entering the real-time mode. MPI/RT can provide three 
types of "sidedness", that refers to the handshaking exchange between communicating tasks. 
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Standard asynchronous communication requires two-sided handshaking. A push or pull model 
illustrates one-sided communication. With pre-established early-binding of channels, it is possible 
for an application to pre-specify a time or event for sending data on a channel. In this case, it is 
possible for the middleware to implement data transfers without any handshaking nor explicit 
user level call. Such a message transfer is termed as zero-sided. We implement such channels as 
real-time send and receive tasks with time-based QoS meeting the channel's requirements. 

The scope of our system however extends beyond MPI/RT and is geared to facilitate 
high-performance real-time distributed computing by providing: (a) Fine-grain global co- 
scheduling of distributed tasks to reduce synchronization overheads, (b) end-to-end predictable 
real-time communication, and (c) guaranteed CPU and network bandwidth. 

The design and components of our system are described in detail in the following 
sections. We implement a high-accuracy fine-grain global clock based on a master-slave scheme 
to synchronize host clocks. The global clock is integrated with the individual CPU schedulers on 
each node. On each node, the Turtle scheduler [1] provides bounded-jitter time-based scheduling 
of computing tasks and communicating "channel" tasks. Communicating tasks shepherd their 
real-time messages between the host and network interface in their allotted CPU time, eliminating 
priority inversion. A real-time messaging layer, BDM-RT, guarantees bounded-time protocol 
processing. Conflict-free global schedules can ensure deterministic end-to-end latencies across 
the Myrinet network, irrespective of interference from non-real-time Ethernet traffic. 

The global clock and scheduler in Turtle are implemented as incremental Linux kernel 
modules. At initialization, the global clock module is installed and establishes a synchronized 
time frame. Once the notion of a global time has been established, the Turtle scheduler is 
installed. The time-based Turtle scheduler uses global time for all dispatch decisions. The 
following sections describe the implementation of each of these modules. 

2     Global Clock on Myrinet 

This section summarizes the goals, design and results achieved for the fine-grain global 
clock implemented using Myrinet. The global clock design and implementation has been 
described in detail in another paper [2]. 

2.1 Clock synchronization in high performance real-time clusters 

Scalability and low resource overhead are the main challenges for software-based clock 
synchronization schemes on high performance clusters. High accuracy and predictable resource 
consumption patterns by the synchronization algorithm are also highly desirable. While high- 
accuracy permits efficient co-scheduling, predictability of the synchronization algorithm 
minimizes contention for network resources between real-time applications and the clock module. 

Algorithms that solve the Byzantine general's problem [12] require communication that 
grows as 0(n2) with respect to the number of clocks involved in the synchronization. Hence, these 
algorithms do not scale well with network size due to unacceptably high communication 
overhead, particularly for large clusters. Hardware based clock synchronization using GPS 
systems [13] is a viable alternative, but is usually more expensive than a software solution that 
uses available network. 

2.2 Clock synchronization module 

We use ä master-slave mechanism to achieve internal clock synchronization [14]. This 
mechanism scales well with network size, requiring 8(n) message transmissions at every re- 
synchronization step. The master node periodically broadcasts a 64-bit nanosecond-precision host 
clock value, using which each slave node builds a synchronized virtual clock. The design uses a 
novel technique to greatly improve the achievable accuracy, compared to traditional master-slave 
schemes [2]. Clock values sent by the master are kept "ticking" by adding the protocol-processing 
delays encountered by clock messages. The transmission latency between the master and slave 
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LANai interfaces is estimated using network feedback at the master node. The above-mentioned 
techniques greatly improve the accuracy of the master message as read by the slave, enabling 
improved clock accuracy. The clock module is scheduled as a periodic real-time task at both the 
master and slave nodes. Clock messages are transmitted using BDM-RT and consequently incur 
deterministic latencies and exhibit predictable utilization of the PCI bus, LANai processing time 
and network bandwidth. 

We achieve an accuracy of ±5usec on an 8-node Myrinet cluster, incurring CPU and 
network bandwidth overhead as low as 0.05%. The algorithm is tolerant to faulty transmission of 
clock values and occasionally missed clock messages. The next section describes how the global 
clock is coupled with the scheduler. 

3     Integrating global clock with the OS for RT-Tasks 

3.1     Turtle Scheduler 
Each node in the cluster runs our time-based scheduling variant of RT-Linux v.0.5 [4] 

called Turtle[l]. Turtle uses RT-Linux's capability to intercept all hardware interrupts, and 
deliver them to the Linux kernel only when it is on CPU. The Turtle scheduler incorporates a 
novel strategy based on the Rate controlled scheduling model by Yau and Lam [7]. The 
scheduling strategy provides the same type of temporal isolation for all real-time tasks as the RT- 
Mach resource reservation model [5]. The scheduler is designed to allow concurrent execution of 
real-time tasks, and non-real-time Linux processes. The Linux kernel itself is guaranteed a 
minimum QoS to ensure that the workstations allow interactive usage. 

All real-time tasks in Turtle are periodic and request QoS in the form of a tuple of start 
time S, end time E, period P, deadline D, and worst case computation time C. The QoS 
requirement is a contract between a task and the scheduler. A critical deadline is one by which the 
scheduler must allocate the task another C units of time. Hence, once a task is given its requested 
computation time, its critical deadline is updated to the next period. The scheduler prioritizes 
tasks based on critical deadlines, thus ensuring that a misbehaving task does not affect QoS 
guarantees for other tasks. Such temporal isolation is critical for real-time scheduling on COTS 
systems that show non-deterministic behavior. Further, if a task's expected time to finish is within 
a certain bound of its deadline, it is treated as a non-preemptible task. 

Turtle uses the APIC timer on Pentium Pro (and higher) processors for scheduling tasks 
with nanosecond accuracy. Setting the APIC timer alarm has a low overhead ( -500ns). Hence, 
Turtle uses the timer in a one shot mode, instead of periodic time slices enabling task dispatch 
with arbitrary granularity. At every scheduling instance, the next alarm is set to the minimum of 
the wakeup time for the next sleeping task TwakeUp, and the end of computation time of the current 
task Tfl„ish. 

The Linux kernel executes queued bottom half of device drivers at every timer interrupt 
(typically every 10ms). If Turtle tries to preempt the kernel before the bottom halfs have been 
handled, it suffers a very large interrupt latency. Further, if a DMA is initiated by a bottom half 
handler, it competes with the CPU for access to the memory bus. In order to avoid these 
problems, Turtle runs the Linux kernel as a real-time task with a guaranteed QoS of 1ms every 
10ms and emulates the timer interrupt for the Linux kernel only when the duration up to the next 
alarm is sufficiently large. Although created as a hard real-time task, the Linux kernel is treated as 
a special greedy task that is given extra computation time to pick up any extra cycles as long as 
there are no other ready real-time tasks. 

3.2     Integrating Turtle with the global clock 
The Global clock initialization routine also uses the APIC timer to periodically fire a 

handler that receives clock synchronization messages from the master. The Turtle module is 
installed after the global clock has been initialized and all nodes synchronized. During 
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initialization, Turtle obtains the period, computation time and expected arrival time of the next 
synchronization message from the global clock handler. This information is used to create a real- 
time task that periodically sends (in case of master) or receives (in case of slaves) 
synchronization messages . Turtle then creates a real-time task for the Linux kernel itself. The 
scheduler then registers itself as the APIC timer handler and the system is ready to instantiate 
other real-time tasks. 

4     Real-time messaging 

4.1 Messaging architecture 

In a distributed real-time system, the communication subsystem is a critical infrastructure 
[14]. In our architecture, Myrinet is used by MPI/RT channel tasks for real-time messaging, while 
Ethernet is used by non-real-time Linux processes. The Myrinet network chiefly consists of low- 
latency worm-hole switches, high-speed Myrinet cables, and programmable Myrinet interface 
cards. The Myrinet interface [8] consists of the LANai processor, on-board SRAM, two DMA 
engines for network DMA, and one DMA engine for transferring data between host memory and 
LANai memory. 

BDM-RT is the low-level real-time messaging layer that facilitates efficient layering of 
the MPI/RT channel abstraction. BDM-RT has been derived from a high-performance messaging 
layer, BDM [15], and aims at providing deterministic time-based real-time communication with 
performance as a secondary goal. BDM-RT consists of a host library and a Myrinet Control 
Program (MCP) that runs on the LANai processor. A complete description of the design of 
BDM-RT is available in the thesis by Chakravarthi [19]. Non-real-time Linux processes 
communicate using the Linux TCP/IP stack over the conventional Ethernet network. 

4.2 Predictability 

Predictability is a primary requirement of real-time messaging layers [16][21][22]. 
Predictability implies determinism in message latency, protocol processing delays, and access to 
shared resources involved in communication. Our system uses the layer-by-layer approach [21] to 
achieve predictability. That is, predictability is built into each software layer, starting from the 
lowest software layer BDM-RT and working upwards to MIP/RT and the application layer. 

Sender and Receiver are pinged with 8 kB packets every 1 second 

BDM 
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Figure 1 Predictable message passing latency in BDM-RT 
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4.2.1 Predictable PCI DMA latency 
Transfer of data between host memory and LANai memory with predictable latencies is 

essential to provide predictable end-to-end latency to the layer above BDM-RT. On a COTS 
system, several devices share the interconnecting bus (e.g. PCI bus) and typically transfer bursty 
non-real-time data. Bus contention from such devices (e.g., Ethernet interface) causes great 
unpredictability in the latency of Myrinet PCI DMA transfers. 

BDM-RT uses a technique that we have termed "blocking-DMA" to ensure predictable 
PCI DMA of Myrinet data [1]. BDM-RT blocks the CPU while the Myrinet on-board PCI DMA 
engines transfer data, thus ensuring that Linux drivers do not initiate a simultaneous PCI transfer. 
Figure 1 shows the BDM-RT latencies with and without blocking-DMA in the presence of 
interfering Ethernet traffic from a ping program that sends 8000 bytes of data every second to 
both nodes. 

4.2.2 Bounded-time protocol processing 
BDM-RT provides bounded-time response both at the host library and at the MCP. 

Sending processes should allocate a Host-LANai buffer-pair using a call to BDMRT_Alloc() that 
always succeeds in bounded time. After copying the message to the allocated host buffer, 
BDMRT_Send() transfers the message across the PCI bus in bounded time, which is a function of 
the message length. At the receiver's node, a call to BDMRT_Recv() succeeds and returns in 
bounded time (a function of message size), provided the message has already been received and 
stored at the LANai interface. With globally planned schedules and predictable end-to-end 
latencies, it is safe to assume that messages arrive at the receiver's LANai interface at or before 
the expected time. It is the responsibility of the layer above BDM-RT to free receive buffers by 
calling the function BDMRT_Free(). 

The MCP runs in an infinite loop, and is mainly responsible for initiating and completing 
DMA transfers to and from the host and the network. For initiating PCI DMA transfers, the MCP 
responds to flags that are set by the host-library when the user is ready to send or receive data. 
Network DMA transfers are initiated by the MCP after examining a LANai register and detecting 
a message (in case of received messages) or upon completion of Host-to-LANai PCI DMA (in 
case of outward bound messages). All actions of the MCP are non-blocking in nature to ensure 
bounded duration of the MCP infinite-loop. 

4.3     Resource management 
The resources that primarily require management to facilitate conflict-free network 

accesses are the LANai processor, LANai buffer space, PCI DMA bandwidth, and link 
bandwidth. BDM-RT has been tightly coupled with the Turtle scheduler to manage shared 
resources without introducing priority inversion. For instance, PCI bus bandwidth is managed by 
absorbing PCI DMA latency into the computation time parameter (C) of the communicating 
channel task. This is because BDM-RT functions that trigger PCI DMA transfers do not give up 
the CPU until the transfer completes. Although this reduces performance, it ensures that no other 
device driver competes for the PCI bus when an application wishes to transfer data. Link 
bandwidth and limited receive-buffer space at the LANai are managed by generating conflict-free 
global schedules based on the global clock. It is important to notice that the high-accuracy global 
clock, the low-jitter Turtle scheduler, and bounded-time protocol processing by BDM-RT are all 
required to ensure conflict-free link schedules without requiring a second-level of link scheduling 
at the MCP. In other words, contention of link bandwidth and Myrinet worm-hole switches is 
eliminated without explicit synchronization among the MCPs. In this sense, our approach is 
orthogonal to that of FM-QoS [17] which aims to achieve LANai-level synchronization. 
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4.4 Priority Inversion 

Priority inversion is minimized by migrating most of the protocol processing activity into 
the tasks' context. Sending tasks marshal their messages to LANai memory, and receiving tasks 
transfer messages from LANai memory to the host in their allotted CPU slot. This minimizes 
priority inversion that can be caused at the receiver's LANai interface when a high-priority 
(early-deadline) message is blocked by another low-priority (late-deadline) message that is 
currently using the PCI bus. The above-mentioned situation is eliminated by performing LANai- 
to-host PCI transfers only during the receive task's allotted CPU time. 

4.5 QoS sensitivity 

QoS-sensitive protocol processing is necessary to meet QoS requirements of real-time 
tasks [18]. Generally, link traffic is prioritized based on a scheme such as Earliest Deadline First, 
or Weighted Fair Queuing to ensure that processes with the most stringent QoS requirements are 
serviced first. On our system, prioritizing is done by the Turtle scheduler based on message 
deadlines of the communicating tasks (channel tasks). The channel task parameters such as start- 
time (S), deadline (D), end-time (E) and period (P) are decided by the MPI/RT middle-ware, 
based on the channel's QoS attributes. The CPU time (C) is set to the worst-case estimate of PCI 
DMA latency for the channel's message size. The BDM-RT MCP simply dispatches messages 
handed to it by the host library in FIFO fashion, because messages are already in correct order. At 
the receiver node, messages are de-multiplexed among the various channel tasks based on 
message tags. 

MPI/RT has to ensure that Myrinet switch contention is absent when global schedules are 
generated at the "commit" phase [6]. For any given schedule, it is possible to estimate the arrival 
time of messages at a Myrinet switch because messages incur bounded protocol processing delays 
before arriving at a switch. Thus it is possible to identify and discard global schedules that can 
potentially cause switch contention. The sample application in the next section establishes these 
bounds on messaging latency. 

5     Sample Application (Ring) 

The following experiments have been performed on an eight node cluster connected by 
Myrinet. Each node consists of a Pentium Pro 200 MHz processor with Intel FX440 
motherboard. A single 32 bit PCI bus (33 MHz) is shared by Ethernet, Myrinet and SCSI 
interfaces. The Myrinet PCI interface consists of the LANai 4.x processor with 1MB of SRAM. 
The base operating system used is Linux 2.0.30. Turtle is an enhancement variant of RT-Linux 
0.5. The Myrinet network is driven by the BDM-RT messaging library. This configuration 
represents a typical high performance cluster composed of commercial-off-the-shelf (COTS) 
desktops. All the results presented here are expected to scale to all newer Pentium and Myrinet 
architectures. 

As previously mentioned zero-sided MPI/RT channels can be implemented using RT 
tasks that send and receive messages with QoS of the channel. The messaging latency for an 
application that uses zero-sided communication is an interval from the time at which the sender 
task is invoked on node i (T^dO) ), up to the deadline of the receiver task on node (i+1) ( 
Drecvft+l)). Deadlines for all tasks are set as the sum of their worst case computation time and the 
scheduling overhead. 

The sequence of actions during a message transfer is depicted in Figure 2. To establish 
accurate bounds on the message passing latency, a sample application was developed that sends 
messages through the cluster in a ring topology. 
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Figure 2: Time-line in messaging 

Periodic Sender/Receiver task pairs are initialized on each node. The tasks have starting 
times of Tsend and Trecv and deadlines of Dse„d and DreCv respectively. For any node i, the starting 
time Trecv(i) of the receiver task is 

Trecv(l)   =Tsen(|(l-l) + 1 stagger w 

The starting time Tsend for the sender task is 

Tsend(i) =Trecv(i) + Drecv(i) (2) 

On getting a message, the receiver task puts it in a shared memory area, which is then 
forwarded to the next node by the sender task. The send and receive calls are non-blocking and 
the application fails if a message is not ready when the call is made. The goal of this experiment 
is to minimize the time the message is idle on the MCP (W) as shown in the figure, by reducing 
A stagger- 

AS shown in the figure, the message reaches remote MCP at ( Tsenci(l) + 8i + a + y), 
where 8i is scheduling overhead for node 1, a is the computation overhead of the send call, and y 
is actual network latency. Receive task starts retrieving the message at (Trecv(2) + 82).  Hence, 
message idle time is minimized if 

tidk = Trccv(2)-Tscnd(l) + (52-51)-(a + y) = 0 (3) 

Note that Tsend and T^v are measured with respect to the global clock on nodes 1 and 2. 
This is subject to a worst case clock variation of e = +/- 5ns. Taking that into consideration along 
with equation (1), the above equation can be recast as : 

Tstagger + e + (82-8i) + -(a + Y) = 0    < - (4) 

Hence, 

Tstagger = E + (8, - 82) + a + y (5) 

To compute the minimum achievable Tsagga, several tests were done to establish bounds 
on the actual network latency y [ lfis.. 4|j.s ] and scheduling overhead 8 [ 4|is .. 25ns ]. 
Uncertainty in scheduling overhead arises from hardware/software interrupt latency and cache 
effects, a is almost a constant at 5 \is since BDM-RT provides deterministic send and receive 
calls. As a result in the worst case, 

L stagger = 10 + 21+5 + 4 = 40|is (6) 

TstaggW was fixed at 45fls and the experiment was successfully run a number of times with 
periods of 5ms and 10ms for 10,000 messages. Figure 3 shows the message idle time recorded on 
the Myrinet board. The minimum idle time is 13ns, which suggests that we may be able to reduce 
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Tagger to about 35|J,s. However, experiments for stagger values under 45pts did not always 
succeed. 

W». «.-» ■■„ MrM Ml, VV* » VJM.WJ,«,-!,, ;,t..ä tr;,<>V> » K;.S'j >!«V.'Mr wv*- « Slij4 

s,.. 

Message Number 

Figure 3 Jitter in waiting time at Lanai 

All 8 nodes were pinged every second with 8kB packets on ethernet for the duration of 
the experiment. Figure 4 shows the actual time when a message is put in the user's buffer with 
respect to start of the receive task (TreCv). The variation in the receive time is about 22|ns, which 
reflects the jitter in scheduling overhead. The small 4JLLS peaks seen in the graph are introduced 
by the default RT interrupt handler, that records the occurrence of ethernet interrupt to be 
serviced when Linux gets back on CPU. The worst case computation time for the receiving task 
was established at 50ns. The deadline Drecv is set as 75[is ( worst case computation time + 
scheduling overhead). As a result, the end-to-end message passing latency including the 
scheduling overhead is: 

Messaging Latency = (Tstagger + DreCT) = 75 + 40 = 115(is. (7) 

The same experiment was repeated without ethernet traffic, and the jitter remained of the 
same order, establishing predictability of BDM-RT in face of other PCI traffic. 

An MPI/RT library implementation on this platform can use this form of tuning to 
accurately schedule real-time channels that use zero sided communication. 

6     Conclusions 

This paper describes the architecture and implementation of a Myrinet cluster of 
workstations that is tailored for MPI/RT based distributed real-time applications and high 
performance parallel applications using coscheduling and gang scheduling. The system features a 
high-accuracy global clock that facilitates time-based coscheduling of real-time tasks using 
Turtle, while allowing interactive usage of all workstations using Linux. BDM-RT is a low-jitter 
and deterministic-overhead messaging layer. A sample ring application demonstrates the use of 
this system and establishes bounds on worst case message passing latency. 
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Figure 4 Jitter in message receive time. 

Future Work 

Efforts are underway to implement a synchronized cluster using similar algorithms on 
GPS hardware. Admission control and generation of global schedules is an area of intense 
research, and several approaches based on genetic algorithms and reinforcement learning are 
currently being investigated. An automated global scheduling algorithm will truly exploit the 
architecture presented here for high performance real-time and non real-time distributed 
applications. The cluster will serve as a base for the prototype implementation of time-based 
MPI/RT channels with full QoS support. 
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Several high-performance communication layers such as BDM, GM, and FM 

have been implemented over the high-speed Myrinet network. Their design 

and interface are generally inadequate for both applications to specify QoS 

requirements, and for the system to perform QoS-sensitive protocol processing and 

resource management. The primary contribution of this thesis is the design and 

implementation of BDM-RT, the first known hard real-time Myrinet messaging 

layer. BDM-RT can provide end-to-end guarantees on message latency and 

bandwidth based on a fine grain global clock and bounded response time at the 

network interface. 

This thesis works to prove the following hypothesis: There is a fundamental 

dichotomy between the design of low-level real-time and high-performance 

messaging layers. This implies that performance goals of high-speed messaging 

layers influence their predictability, and that predictable communication requires 

performance trade-offs. The hypothesis is proved by analysis of design of BDM 

and BDM-RT and by experimental verification. 
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CHAPTER I 

INTRODUCTION 

1.1    Background 

The Real-Time Messaging Passing Interface (MPI/RT) (Kanevsky, Skjellum, 

and Watts 1997) is a recently emerging middleware standard for distributed 

real-time computing. MPI/RT provides a notion of Quality of Service (QoS) 

for development of real-time applications. MPI/RT supports three real-time 

programming paradigms, namely — Time-based, Priority-based, and Event- 

driven programming models. In order to be able to provide QoS guarantees 

for applications, the MPI/RT middleware requires real-time support from the 

Operating System and hardware that lie below it. In this regard, MPI/RT is said 

to impose "middle-down" requirements, that is, potential modification of operating 

systems in order to meet its goal. No known implementation of MPI/RT with full 

QoS guarantees exists to date. This is owed to both the relative infancy of the 

standard and the challenges involved in its implementation. MPI/RT requires 

support from a distributed real-time operating system that provides real-time 

services that map well to the MPI/RT QoS model. PromisQoS (Apte et al. 1999, 

221) is an envisioned time-based real-time operating system that is being designed 

and implemented currently at Mississippi State University. The primary goal of 

PromisQoS is to enable a prototype implementation of MPI/RT that provides 

full QoS support for time-based real-time computation and communication. The 

challenges involved in the development of PromisQoS are many. The envisioned 
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system is required by MPI/RT primarily to provide bounded-delay messaging, 

bounded-jitter process scheduling on a global clock, and temporal isolation of 

processes to avoid contention of shared resources. The system is also required to 

offer high performance by providing high bandwidth, low latency, and low overhead 

communication. The basic building blocks of PromisQoS are its EDF TURTLE 

scheduler, a high-precision global clock, and a real-time messaging layer BDM-RT. 

These components are those most essential for the implementation of the MPI/RT 

Time-based real-time Channel abstraction (Kanevsky, Skjellum, and Watts 1997). 

This thesis is based on the development of the real-time messaging layer BDM-RT 

for PromisQoS. 

1.2    Motivation 

The motivation for this thesis work arises from the requirement of a messaging 

subsystem with at least the following characteristics: Predictability and QoS 

support, high bandwidth and low latency communication for high-performance 

real-time distributed applications, and good mapping between channel abstraction 

of MPI/RT and messaging system software. 

Myrinet is a high speed gigabit per second networking technology that is 

being used widely for high-performance distributed computing. Initial experiments 

with Myrinet network latency have demonstrated its suitability for predictable 

communication as well. Given the dual goals of performance and predictability for 

MPI/RT applications, Myrinet appears to be a suitable hardware platform for the 

development of a messaging subsystem that allows efficient layering of MPI/RT. 

Several high-bandwidth, low-latency messaging layers have been written over 

Myrinet. Examples include Fast Messages (FM) (Pakin, Lauria, and Chien 1995) 
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from University of Illinois, Urbana Champaign, Glenn's Messages (GM) (Myricom, 

Inc. 1999) from Myricom, Inc., BullDog MCP (BDM) (Henley et äl. 1997) 

from Mississippi State University, LÄNai Active Messages (LAM) (von Eicken 

et al. 1992, 256) from University of California, Berkeley, and Basic Interface for 

Parallelism (BIP) (Prylli 1997) from University of Lyon, France. Most of these 

messaging layers are used in distributed computing and are typically layered under 

a middleware such as MPI (Snir et al. 1995) or PVM (Sunderam et al. 1994, 531) 

However, real-time messaging over Myrinet is not currently popular. FM-QoS 

(Connelly and Chien 1997) is the only known QoS based messaging layer, but is 

not fundamentally a hard real-time messaging layer as it cannot provide guarantees 

on end-to-end latency. 

This thesis is motivated by the development of BDM-RT, the first global-clock 

based real-time messaging layer on the high-speed Myrinet network (Boden et al. 

1995, 29). BDM-RT was developed by the author of this thesis by re-engineering 

the high-performance messaging layer BDM (Henley et al. 1997). The primary goal 

of BDM-RT is to support the implementation of Time Based MPI/RT Channels 

with full QoS guarantees. Performance is also important, but is a secondary goal. 

The goal of providing QoS guarantees influences its design and makes BDM-RT 

considerably different from traditional high-performance messaging layers. The 

■motivation of this thesis liesin demonstrating the unsuitability of high-performance 

messaging subsystems for real-time communication, even if performance is an 

important secondary goal for the real-time system. Further, it constructs an 

alternative messaging layer to provide predictable communication and analyzes 

its effect on the performance of the system. 
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1.3    Hypothesis 

This thesis hypothesizes that there is a fundamental dichotomy between 

the design of low-level real-time and high-performance messaging layers. This 

work discusses the fundamental design differences between real-time and high- 

performance messaging subsystems. This thesis works to show that the goals of 

performance and predictability do not go hand-in-hand and that trade-offs are often 

essential to improve one at the cost of the other. As a result, messaging systems 

designed with the primary goal of performance are fundamentally unsuitable 

for QoS based communication and hence cannot be used for a high-quality 

implementation of real-time middleware such as MPI/RT. 

1.4    Basis 

The basis of the stated hypothesis is from initial experimentation on latency 

jitter1 of periodic messages using BDM, and the design similarities of BDM with 

other popular HP messaging layers such as FM and GM. 

As pointed out by Mehra, Indiresan, and Shin (1996), a QoS-sensitive 

messaging layer must be able to provide guaranteed bounds on transfer latencies 

at the minimum. Without a guaranteed limit, such a layer cannot organize its 

transfers so as to meet the QoS requirements of the different applications that 

it services. A real-time messaging layer in general needs to be aware of the 

current traffic load (Connelly and Chien 1997) in order to plan its transfers in 

the presence of real-time tasks with differing QoS requirements and best-effort 

tasks. Alternately, the CPU scheduler should be closely coupled with the messaging 

subsystem so as to control the network traffic by planning appropriate global CPU 

latency jitter is a measure of variation in message latency incurred by individual messages 
of the same length exchanged between the same end-points. 
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schedules for all communicating processes across the network. Messaging activity 

has to be coupled with CPU schedules to synchronize receiving processes with 

message arrival and to avoid buffer overflows. These basic requirements of an 

real-time messaging subsystem are absent in messaging systems designed for high- 

performance alone. 

1.5    Scope 

This work is based on real-time messaging software designed over Myrinet 

(Boden et al. 1995, 29). On a general level, this work is particularly applicable to 

the design of real-time software on architectures with any or all of the following 

features: 

• High speed networks where link bandwidth exceeds host-to-network interface 

bandwidth 

• Networks with programmable network interfaces, and bus master DMA 

capability 

• Cut-through switched networks as opposed to conventional packet-switched 

networks 

• Systems where performance as well as predictability are important goals 

Design choices that have been presented and discussed for real-time 

communication are chiefly applicable to the MPI/RT time-based real-time 

communication model, although some of these principles apply equally well to 

systems based on the priority-based and event-based models. 
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■ 1.6    Contributions 

The contributions of this thesis work are as follows: 

1. By demonstrating that real-time messaging subsystems impose significantly 

different design requirements as compared to their high-performance 

counterparts, this work shows that it is not possible to layer a real-time 

middleware such as MPI/RT on an existing high-performance messaging 

layer when QoS guarantees are required. 

2. Research in real-time messaging systems design has been focused around 

conventional network hardware such as ethernet. The design of BDM-RT 

introduces new concepts such as "blocking DMA" that address the issue 

of resource management and traffic isolation in the presence of a network 

processor and on-board DMA engines. 

3. There have been several implementations of the real-time channel 

paradigm over packet-switched networks (Mehra, Indiresan, and Shin 1995) 

(Cilingiroglu, Lee, and Agrawala 1996). However, this is by far the first 

known implementation of a real-time messaging layer that supports direct 

layering of real-time channels on a worm-hole routed, cut-through switched 

high-speed network such as Myrinet. 

4. BDM-RT is the first known Myrinet messaging layer that implements a fine- 

grain global clock to facilitate global message schedules. 

5. BDM-RT and PromisQoS provide a testbed for a prototype implementation 

of Time-based MPI/RT Channels with full QoS support. To date, no 

prototype of MPI/RT with full QoS support has been developed. Successful 
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implementation of MPI/RT over PromisQoS will serve as a proof of concept 

for the feasibility of implementation of the MPI/RT Time Based Channel. 

6. By demonstrating the dichotomy between the design requirement of high- 

performance and real-time messaging layers, this thesis paves the way for the 

design of high-speed network interface hardware that is particularly suitable 

to both high-performance and real-time distributed computing. 

1.7    Organization of this thesis 

The remainder of this work is organized as follows. Chapter 2 introduces 

the hardware and software configuration of the system that BDM and BDM- 

RT are implemented on. Chapter 3 reviews the basic requirements of real-time 

communication subsystems based on a literature review of existing systems and 

past research in real-time communication. Chapter 4 reviews the goals and design 

choices of high-performance messaging layers on Myrinet. Chapter 5 presents 

the design of BDM and BDM-RT and discusses the rationale behind their design. 

Chapter 6 analyzes in detail the unsuitability of BDM for real-time communication 

as well as the impact on performance of BDM-RT at the cost of improved 

predictability as compared to BDM. Chapter 7 outlines the experiments that were 

carried out to support the hypothesis and discusses their expected and actual 

results. Chapter 8 offers conclusions and suggested future work. 
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CHAPTER II 

SYSTEM ARCHITECTURE 

This chapter describes the hardware and software architectures of the 

distributed system in which BDM and BDM-RT operate. This description has been 

presented to allow the reader to better understand the influence of the hardware 

architecture on the design of messaging layers over Myrinet. 

2.1    Hardware architecture 

The system consists of a cluster of PCs connected by a single 8-port Myrinet 

switch. The chosen hardware configuration represents a typical cluster of COTS 

desktops, in keeping with the scope of the hypothesis. Each host consists of a 

Pentium Pro II 200 MHz processor, and uses the Intel FX440 chip-set. A single 

32-bit 33MHz PCI bus is shared by Ethernet, Myrinet and SCSI interfaces. This 

configuration is representative of recent generation PC architectures. The Myrinet 

PCI interface consists of the LANai 4.x processor with 1 MB of SRAM. The 

Myrinet interface is described below. 

2.1.1    Myrinet 

Myrinet is a widely used high-speed network technology in high-performance 

domains. Myrinet currently supports full-duplex connections operating at 1.28 

Gigabits/sec, and Myrinet cut-through switches route based on message header 

bits, with latencies as low as 0.5 microseconds. Figure 2.1 shows a Myrinet network 
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Figure 2.1: Topology of a Myrinet Network 
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Figure 2.2: LANai Interface 

of four hosts connected using two 8-port switches. Myrinet networks provide a 

degree of reliability in the Link Layer itself, with less than 1 bit-error for every 

1015 bits transmitted. The recent generation Myrinet network interface typically 

consists of an on-board processor (the "LANai" processor), about 1 MB of SRAM 

and three Direct Memory Access (DMA) engines. The interface is shown in figure 

2.2. 

The three DMA engines are meant for DMA transfers to the network, from the 

network, and between host and LANai memory. A custom built program called 

the Myrinet Control Program (MCP) runs on the LANai processor. The LANai 
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4.x series boards also contain a 32-bit Real Time Clock (ETC) that ticks every 0.5 

//sec. 

2.2    Software architecture 

HOST 
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Linux 
Applications 
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and drivers 

BDM-RT 
Messaging Layer 
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Non real-time 
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(Control Program) 

LANai Processor 

Figure 2.3: Software Architecture 

Figure 2.3 offers a broad picture of the various software layers in the system. 

Real-time and non-real-time software layers are clearly segregated as shown by the 

vertical dividing line in the figure. Non-real-time applications run as processes 

on Linux, which itself is serviced by a real-time kernel. Real-time application 

programs are written over the middleware MPI/RT which is layered on top of the 

messaging library BDM-RT. At the bottom is a real-time kernel that encapsulates 

the hardware from the upper layers. For real-time communication, BDM-RT 

avails itself of services provided by the Myrinet device driver.   On the Myrinet 
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interface, the custom-built Myrinet Control Program (MCP) executes on the on- 

board LANai processor. The messaging library communicates with the MCP using 

shared memory flags on the LANai memory. 

I RT FIFO I RT SHMEM 

PromisQoS RT Kernel 
BDM-RT 

Myrinet Driver 

IntoTupts 

Host Hardware 

Pa DMA 
LANai stmem 

Myrhet Hardware 

Figure 2.4: Software Architecture of PromisQoS 

2.2.1    PromisQoS framework 

A detailed view of the PromisQoS Operating System is shown in figure 2.4. The 

building-blocks of PromisQoS come from the RT-Linux (Barbanov and Yodaiken 

1996, 19) framework. Real-time tasks (RT tasks) run in kernel context over the 

real-time PromisQoS real-time kernel (RT Kernel). Linux itself runs as a special 

process that is guaranteed at least 1 ms CPU time every 10 ms. The RT kernel 

buffers all hardware interrupts and delivers them as software interrupts to Linux, 

when Linux is scheduled on the CPU (Barbanov and Yodaiken 1996, 19). RT 

tasks in a single node communicate with other RT-tasks and best-effort Linux 

processes using either PromisQoS's shared memory (RT SHMEM) (Apte et al. 
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1999, 221) or RT-Linux's RT-FIFOs (Barbanov and Yodaiken 1996, 19). Channel 

message transfer occurs across the Myrinet network via the BDM-RT library. Each 

MPI/RT channel is implemented as an real-time task that performs communication 

using BDM-RT. 

PromisQoS uses the TURTLE Earliest-Deadline-First scheduler (Apte et al. 

1999, 221), capable of scheduling periodic real-time tasks with periods as low as 

60 //sec. Every real-time task specifies the following five task parameters to the 

TURTLE scheduler: start-time (S), period (P), deadline (D), computation (C), and 

end-time (E). All admitted real-time tasks are guaranteed C units of computation 

time every period, before the deadline D elapses relative to the start of the period. 

2.2.2    Clock synchronization module 

PromisQoS uses a tightly synchronized global clock to schedule processes 

across the network. The individual on-chip APIC Time-Stamp Counter on each 

machine drifts with respect to the others, and varies with changes in the ambient 

temperature, pressure and other effects. Hence a mechanism is required to keep 

individual clocks synchronized. Internal clock synchronization (Stankovic and 

Ramamritham 1993), that is synchronization of clocks with respect to one another 

but not with respect to the outside world, is achieved by using a master-slave 

mechanism. One of the nodes plays the master's role and periodically broadcasts 

the master time-stamp to all slaves across the Myrinet network. Every slave 

maintains a virtual clock that is updated with the receipt of each master-clock 

value at every re-synchronization period. The master and slave clocks run as real- 

time tasks with a period of 1 second. 
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Figure 2.5: Global Clock 

Figure 2.5 shows the difference between the slave's virtual clock and the 

master's clock at every re-synchronization stage. This gives a measure of the 

accuracy of the global clock. This mechanism achieves synchronization with an 

accuracy of ±4 fjsec. This is relatively fine grain accuracy for software based 

clock synchronization. This fine grain accuracy is a result of introducing special 

mechanisms in BDM-RT that keep the master's clock "ticking" while in transit. 

It is known that the accuracy of master-slave virtual clocks is limited by the 

jitter in message transit time. In the case of Myrinet, end-to-end latency jitter 

far exceeds 4 fis. BDM-RT reduces the uncertainty in clock message latency 

by recording message delays incurred by the master clock message in various 

stages of its transit. Using the recorded delays, slaves can estimate the master 

clock value at the time of receipt of the clock message with high accuracy. The 

clock synchronization algorithm is tolerant to faults arising from missed clock 
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messages. Support for the abovementioned high quality transmission of clock 

messages was written as a part of BDM-RT development by the author. The 

fine-grain clock synchronization algorithm and its interface with the rest of the 

system were developed by collaborators Pillai and Apte (Apte et al. 1999, 221). 
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CHAPTER III 

REAL-TIME COMMUNICATION 

In a distributed real-time system, the communication subsystem is critical 

infrastructure (Stankovic and Ramamritham 1993). The communication 

subsystem must behave deterministically with respect to communications delays 

and network resource access times. Some principles of real-time communication 

based on past research are presented below. These principles govern the design of 

real-time messaging layers such as BDM-RT. While this chapter presents design 

essentials for real-time messaging subsystems in general, a detailed discussion of 

the design of BDM-RT appears in chapter 6. 

3.1    Predictability 

Predictability is a primary requirement of real-time messaging layers 

(Cilingiroglu, Lee, and Agrawala 1996) (Stankovic and Ramamritham 1990, 247) 

(Lee et al. 1996). Predictability implies determinism in message latency, protocol 

processing delays, and access to shared resources involved in communication 

including the requested bandwidth. Two popular approaches to achieving 

predictability in complex real-time systems are the layer-by-layer approach and 

the top-layer approach (Stankovic and Ramamritham 1990, 247). A real-time 

system can be broadly viewed to be built of various hardware and software layers 

such as semiconductor components, the hardware architecture layer, the operating 

system layer, a middleware layer, and the application layer.   The layer-by-layer 
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approach is based on the assumption that a higher layer is predictable, if and only 

if, the lower layer is predictable, while the top-layer denies the validity of this 

assumption. To provide 100% guarantees on deadlines, as is required by critical 

tasks in a hard real-time system, a layer-by-layer approach is required (Stankovic 

and Ramamritham 1990, 247). PromisQoS adopts the layer-by-layer approach to 

enable the layering of a QoS based MPI/RT middleware with predictable messaging 

support from BDM-RT layer. 

3.2    Resource management 

A real-time messaging subsystem takes into account all the shared resources 

used by it and eliminates contention for these resources among the various 

processes. Resource usage is managed by the subsystem either by providing a 

resource reservation model as in RT-Mach (Lee et al. 1996), or by arbitrating 

concurrent accesses based on priority or deadline of the processes involved (Mehra, 

Indiresan, and Shin 1996). The system should have a mechanism to avoid priority 

inversion, which can easily interfere with meeting QoS guarantees. The primary 

resources involved in communication are as follows: network buffer space, host 

CPU cycles, network co-processor CPU cycles, physical network media, and 

shared system buses such as the PCI bus (Solari and Willse 1998). In a time- 

based messaging system, resource contention should ideally be absent or should 

be resolved in a known, bounded time. Sometimes, the accessibility of one or 

more system resources may be dependent on the accessibility of another resource. 

An example of this is that memory, as a resource, can be accessed by a process 

only when it is scheduled on the CPU, that is, when it has access to the CPU. 

The RT-Mach team (Lee et al. 1996) has incorporated this into the notion of a 
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controlling-resource and controlled-resource into their resource reservation model, 

thus enabling centralized management of multiple related resources. This model 

is however inapplicable in the presence of bus-master capable devices such as the 

LANai PCI DMA engine. The PCI bus can be treated as a controlled resource 

with the CPU as the controlling resource only if all accesses to the PCI bus can 

originate from processes that are currently using the controlling resource, that 

is, the CPU. In our case, the MCP can initiate PCI activity independent of the 

host CPU, thus causing an inconsistency with the abovementioned requirement. 

Chapter 5 explains how BDM-RT addresses the PCI bus isolation problem. 

In cut-through worm-hole routed networks such as Myrinet, contention for the 

Myrinet switch needs to be specially addressed. Packets arriving at a switch at 

the same time with the same out-going port can block one another, introducing 

unpredictability in network transmission latency. Global schedules of network 

traffic are essential to avoid switch contention. FM-QoS (Connelly and Chien 

1997) is a QoS based messaging layer on Myrinet that minimizes the problem of 

switch contention by synchronizing link traffic based on feedback from network 

DMA latencies. FM-QoS is described in section 3.7. 

3.3    QoS sensitivity 

A simple FIFO delivery of messages does not suffice to support the different 

QoS requirements of real-time tasks, because FIFO delivery amounts to ignoring 

differences in QoS requirements between processes (Mehra, Indiresan, and Shin 

1996). Link traffic should be prioritized based on a scheme such as Earliest 

Deadline First, or Weighted Fair Queuing to ensure that processes with the 

most stringent QoS requirements are serviced first (Mehra, Indiresan, and Shin 

61 



1996). In our context, MPI/RT provides QoS sensitivity by appropriately assigning 

channel task parameters such as period, deadline, and computation time during the 

MPI/RT Commit phase (Kanevsky, Skjellum, and Watts 1997). In other words, 

channel messages are implicitly prioritized based on the CPU schedules. 

3.4    Provision for best-effort traffic 

Real-time subsystems are normally designed to support a mixture of best-effort 

and real-time traffic (RT traffic). In order to ensure that best-effort traffic does not 

interfere with meeting the QoS requirements of RT traffic, it is required that these 

forms of traffic be processed separately. The design should also ensure fairness to 

best-effort traffic by not starving it. The system must clearly separate resources 

such as buffer space, link bandwidth and CPU time for protocol processing between 

RT and best-effort traffic. For example, in (Mehra, Indiresan, and Shin 1996) 

three message queues are used: one for real-time messages that are "on-time" 

with respect to their deadline (highest priority), one for best effort traffic (medium 

priority), and the third for real-time messages that are significantly early compared 

to their deadline (least priority). This avoids starvation of best-effort tasks, while 

still meeting the QoS requirements of the real-time tasks. 

BDM-RT does not have explicit support for best effort traffic because channel 

priorities are assigned by the MPI/RT Commit function, which is transparent to 

BDM-RT. Provision for best-effort aperiodic traffic is planned as a future goal 

because of the complexity involved in admission control of such tasks. In the 

current framework, BDM-RT can admit best-effort tasks as periodic real-time tasks 

with relaxed deadlines. This ensures fairness to best-effort tasks and at the same 

time ensures that real-time tasks meet their deadlines.   However, running best- 
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effort tasks as strictly periodic tasks makes BDM-RT insensitive to the bursty 

nature of best-effort traffic. 

3.5    Traffic isolation 

The messaging subsystem must provide traffic isolation by forcing applications 

to abide by their requested QoS requirements. A misbehaving task should be 

disallowed from causing a failure to meet other tasks' QoS requirements. In 

the PromisQoS framework, the MPI/RT middleware and the TURTLE scheduler 

together ensure that MPI/RT channels adhere to their requested network resource 

usage. MPI/RT polices PCI bus usage and network bandwidth usage by 

performing run-time checks on the length of data transferred by each channel, 

during every period. TURTLE checks bandwidth utilization of channel tasks by 

policing its alloted CPU time. MPI/RT will produce an error if channel tasks 

attempt to transfer more data than requested at the MPI/RT Commit phase 

(Kanevsky, Skjellum, and Watts 1997). 

3.6    Time-bound protocol processing 

Protocol processing time should be predictable in order to achieve predictable 

ehd-to-end latency. Activities such as fragmentation, re-assembly, and queue access 

routines should be time-bounded. Priority inversion in protocol processing is of 

specific concern. For example, priority inversion can occur if the protocol stack 

uses FIFO delivery and receipt, causing a high-priority receiving task to potentially 

block until a lower priority task receives its message. Even with prioritized delivery 

such as EDF or priority-based delivery, priority inversion caii occur if the protocol 

stack is implemented in the kernel. Suppose a deluge of messages for low-priority 
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tasks arrives at a node, the kernel processes these messages at kernel priorities 

(which is normally high) and possibly even uninterruptibly, thus causing other high 

priority tasks to starve. Several protocol processing software designs have been 

suggested by Lee et al. (1996) to minimize inversion. These include performing 

protocol processing using a shared communication protocol server, prioritized 

threads instead of a single high- or low-priority thread for message sending and 

receipt, and the application thread itself. Using a shared protocol server allows 

one to treat the server as a shared resource and apply the resource reservation 

model to it. Using prioritized threads allows preemption of low-priority protocol 

processing by high-priority ones. Application-level protocol processing amounts to 

implementing a user-library, which moves protocol processing to application space. 

BDM-RT is implemented as a user library with most of the host-side protocol 

processing embedded into the application's CPU time. 

3.7    Real-time messaging on Myrinet 

Myrinet has traditionally been used for high-performance distributed 

computing rather than for real-time communication, as discussed in Chapter 4. 

FM-QoS (Connelly and Chien 1997) is the only known real-time messaging 

layer implemented on Myrinet. Of the essential components of real-time messaging 

layers discussed in this chapter, FM-QoS implements only a limited form of 

resource management. FM-QoS synchronizes link traffic to minimize switch 

contention (Connelly and Chien 1997) and consequently reduces LANai-to-LANai 

latency jitter. A brief description of FM-QoS is presented here. FM-QoS 

adopts a technique called Feedback Based Synchronization (FBS) to achieve self- 

synchronizing schedules that minimize resource conflicts. FM-QoS builds a global 
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view of time at the network interface by periodically sending self-synchronizing 

messages (Connelly and Chien 1997). These messages are intended to block one 

another at the Myrinet switch by virtue of having a common oüt-port. Based on 

the effect of this blocking on the network DMA latency, FM-QoS estimates the 

relative drifts of LANai clocks at the different nodes in the network to build a 

global view of time. This facilitates creating conflict-free schedules of link traffic. 

The inception of extraneous self-synchronizing traffic introduces an overhead 

of up to 1% of the network bandwidth for an 8-node, 1-switch network. The 

overhead scales linearly with the relative drift rates between the LANai clocks. 

The scalability of this solution is questionable because of increased overhead in 

the presence of multiple Myrinet switches. FM-QoS is compared with BDM-RT in 

section 5.3.7. 

3.8    Summary 

To summarize, the design of real-time messaging subsystems needs to address 

the following main issues: predictability of message latency and protocol 

processing, management of shared resources, QoS sensitive processing of tasks, 

provision for best-effort traffic, traffic isolation, and time-bound and protocol 

processing free of undesired priority inversion. In a Myrinet network, switch 

contention and PCI bus contention need to be specifically addressed. FM-QoS 

is the only known implementation of a Myrinet real-time messaging layer, but falls 

short of meeting hard real-time requirements as it lacks explicit management of 

the PCI bus. 
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CHAPTER IV 

HIGH-PERFORMANCE MESSAGING 

This chapter highlights the goals of high-performance messaging systems and 

discusses the key design issues involved in achieving these goals. Although much 

of the discussion is applicable to high-speed networks in general, this chapter 

focuses chiefly on Myrinet-like high-speed hardware architectures. The network 

interface is assumed to have Direct Memory Access (DMA) capability to access 

host memory, and processing capability to offload protocol processing from the host 

CPU. Another underlying assumption is that raw network bandwidth is greater 

than that between the host and network interface, which is true of current high 

speed networking technologies such as Myrinet (Boden et.al. 1995, 29), Giganet 

(Giganet Inc. 2000), and ServerNet (Horst and Garcia 1997). The following 

discussion applies in general to nearly all popular high-performance messaging 

layers over Myrinet such as GM (Myricom, Inc. 1999), FM (Pakin, Lauria, and 

Chien 1995), BDM (Henley et al. 1997), BDM/Pro (MPI Software Technology, 

Inc. 2000), and AM (von Eicken et al. 1992, 256). A comprehensive overview 

of the design of several high-performance communication systems on Myrinet is 

discussed by Bhoedjang, Ruhl, and Bal (1998, 53). 

4.1    Design issues 

Performance goals combined with the underlying hardware characteristics such 

as CPU speed, memory bandwidth, network bandwidth govern the messaging 

66 



software design.   Performance goals can be classified chiefly into the following 

parameters (Bhoedjang, Ruhl, and Bal 1998, 53): 

• Low message latency, 

• High user-level bandwidth, and 

• Minimal processor overhead. . 

The design is also influenced by other goals pertinent to high-performance 

distributed computing (Bhoedjang, Ruhl, and Bal 1998, 53) such as 

• Degree of reliability, 

• Scalability, and 

• Support for multicast operations. 

We now discuss the design choices available to messaging layers over a high- 

speed Myrinet-like network, given the abovementioned performance goals. 

4.1.1    Host memory to network interface transfers 

Host-to-host data transfers consist of three transfer stages: The sender's host 

memory to network buffer, the sender's network buffer to the receiver's network 

buffer, and the receiver's network buffer to host memory. Of these, two transfers 

occur between host and network memory. There are two ways for performing 

this transfer: Direct Memory Access (DMA), and Programmed I/O (PIO). The 

presence of a master-capable DMA engine on the Myrinet network interface creates 

the possibility of a host-initiated and MCP-initiated DMA. The effect of these 

design choices on performance are discussed below. 
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4.1.2   DMA vs. PIO 

Fundamentally DMA is preferable to PIO for long transfers as the transfer 

does not require the host CPU, thus allowing overlapping of computation with 

communication. On a given hardware platform, if DMA is at least approximately 

as fast as PIO then DMA is the clear superior choice for achieving high bandwidth. 

However, on certain platforms PIO may be significantly faster than DMA. For 

example, figure 4.1 shows the DMA vs. PIO bandwidths on an UltraSparc with an 

SBus LANai interface. It is seen that Host-to-LANai PIO transfers are faster than 

DMA, for all transfer sizes. On this platform, BDM uses PIO for host-to-LANai 

transfers and DMA for LANai-to-host transfers (Henley et al. 1997). However, on 

a Pentium with PCI LANai interface DMA is superior to PIO as seen in figure 

4.2. On this platform, BDM uses DMA for all transfers between host and LANai 

memory. According to Bhoedjang, Ruhl, and Bal (1998, 55) examples of systems 

that use DMA are VMMC (Dubnicki et al. 1997, 388), PM (Tezuka et al. 1998, 

308), VIA on Giganet (Giganet, Inc. 2000), and GM. 

Host to LANai bandwidth LANai to Host bandwidth 

1000 2000 3000 4000 
Transfer Length (bytes) 

0«L 
5000   0 1000    2000    3000     4000 

Transfer Length (bytes) 
5000 

Figure 4.1: Raw SBus Bandwidth comparison on UltraSparc running Solaris 
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2000 4000 6000 8000 
Transfer Length (bytes) 

10000 

Figure 4.2: Raw PCI Bandwidth comparison on Intel x86 running Linux 

DMA involves a fixed set-up cost that is absent in PIQ. This normally causes 

DMA latencies to be higher than PIO latencies for short messages where the 

DMA setup cost is comparable to the actual transfer time. Consequently, high 

performance subsystems such as BIP (PryHi 1997) use a combination of DMA and 

PIO - with PIO for short transfers and DMA for long transfers. 

4.1.3   DMA initiation and completion 

On Myrinet, DMA is initiated by writing DMA parameters such as target 

addresses, DMA length and DMA direction into on-board LANai DMA registers. 

Because LANai memory is directly accessible by the host CPU, DMA initiation 

can be done either by the MCP or the host library. The same applies to detection 

of DMA completion, as it involves examining a LANai register value. Access to 

LANai registers by the host is across the inter-connecting bus (e.g., the PCI bus) 

and is significantly more expensive than access by the MCP. For this reason, it is 

more advantageous for the MCP to set up and complete DMA transfers between 
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the host and network interface. Another strong reason for avoiding the detection 

of DMA completion. Polling will then compete against the DMA transfer for bus 

cycles and affect performance. 

4.1.4 Message receipt mechanism 

Message receipt can be done either by polling or can be interrupt based. 

Interrupt based receives incur less processor overhead because the host processor 

does not waste CPU time to detect the arrival of a message. On the other hand, 

polling eliminates an extra context switch which is better for latency. On systems 

with high context switch overheads and high interrupt latencies, polling is the more 

attractive option. FM, BDM, and BIP (Prylli 1997) do polling based receives. 

Some systems also use a combination of polling and interrupts as an optimization 

for latency and processor overhead. GM, VMMC (Dubnicki et al. 1997, 388), and 

U-net (von Eicken et al. 1995, 303); are examples of such systems. GM allows 

user programs to choose the receipt mechanism by calling the appropriate receive 

function at run-time. GM also supports a hybrid receive mode where the user 

process polls for a finite duration before blocking on an interrupt. 

4.1.5 Buffer queue management 

Network buffer space is limited, and needs to be managed efficiently by 

messaging subsystems. The simplest buffer management scheme is to use FIFO 

queues to store used and free network buffers. BDM, GM and FM use FIFO 

queues for managing sent and received message buffers. Additional queues are 

implemented to store messages for potential retransmission if reliability is desired. 

FIFO queuing causes least queue-processing overhead,  but at the same time 
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imposes the restriction of in-order delivery of messages unless a tag-based de- 

multiplexing scheme is implemented at the receiver side. For example, in BDM, 

FM and GM out-of-order receives are not possible. However, GM has a provision 

for sending high and low priority messages, which allows out-of-order transfer to 

a certain extent. Typically, this is used by the distributed computing middleware 

such as MPI (Snir et al. 1995) as follows: the high priority channel is used to send 

small control messages while the low priority messages carry actual data. 

4.1.6   Zero-copy mechanism 

Many messaging layers improve latency and bandwidth by avoiding making 

extra copies of user data within host memory itself. If DMA is used, this requires 

the user's data to reside in DMA-able memory pages (to be pinned in physical 

memory and not swapped out by the Virtual Memory subsystem). Two ways of 

achieving zero-copy is by pinning user pages to memory (if the Operating System 

allows this) or by mapping pinned kernel pages to user space. GM supports both 

methods of allocation by providing functions to both allocate a DMA-able region, 

as well as to pin a portion of user's memory. On Linux, BDM allocates kernel 

pages and maps them to user space at initialization time. 

4.1.7   Reliability 

Nearly all Myrinet messaging layers provide reliable communication. The 

Myrinet Link layer itself provides a relatively high degree of reliability using a CRC. 

Further, bit errors are as low as 1 in 1015 bits transmitted. However, reliability is 

desired to recover from receive buffer overflows. GM and FM provide a reliable, 

ordered communication protocol.   BDM provides a multi-protocol suite ranging 
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from unreliable communication to reliable and ordered communication. Reliability 

reduces performance because of the additional overhead of ACK/NACK packets. 

However, low-level messaging provide reliability as it is a basic requirement in the 

high-performance computing environment (Snir et al. 1995) (Sunderam et al. 1994, 

531) and is too costly too implement in higher layers. 

4.2    Timeliness and resource management 

Despite design differences between high-performance messaging layers such as 

BDM, FM, GM, AM, VMMC, BIP, and U-Net, a common aspect of their design is 

the absence of explicit mechanisms to ensure timeliness of message transfer in the 

presence of contending traffic. These messaging layers are incapable of providing 

specific guarantees on bandwidth and latency. It is seen that minimizing resource 

contention, performing QoS sensitive processing, and providing bounded-time 

message delivery do not appear among the goals of high-performance messaging 

layers. In this respect, BDM is similar to all other high-performance layers cited 

in this chapter. 

The insufficiency of high-performance layers for real-time communication is best 

illustrated by discussing a relevant MPI/RT development effort by the author of 

this thesis. Time-based MPI/RT Channel (Kanevsky, Skjellum, and Watts 1997) 

was recently implemented over BDM/Pro (MPI Software Technology, Inc. 2000) 

on a multi-computer platform. BDM/Pro is a high-performance messaging layer 

that performs low-latency and high-bandwidth communication on certain Myrinet 

based multi-computer platforms. For performing time-based communication, a 

global clock was implemented by the MPI/RT messaging layer. The achieved clock 

accuracy was of the order of 1 millisecond because of the absence of timeliness 
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of clock message delivery by BDM/Pro. Compared to the microsecond range 

latencies of messages on Myrinet (Boden et al. 1995, 29) this is unacceptable 

granularity for time-based communication. In contrast, the BDM-RT based global 

clock (see section 2.2.1) achieves granularity that is realistically usable for real-time 

communication. 

4.3    Summary 

In summary, high-performance messaging layers share the common goals of 

low latency, high bandwidth, low processor overhead. The design of these layers is 

influenced strongly by their goals. On a Myrinet-like architecture, various design 

options exist with respect to activities such as the transfer mechanism between 

host and network buffers, message receipt mechanism, zero-copy mechanism, and 

level of reliability. The hardware platform and Operating System parameters 

generally govern the choice of these mechanisms. With respect to timeliness of 

message delivery and QoS sensitive protocol processing, BDM can be considered 

as representative of the other messaging layers because of the absence of real-time 

components in any of the high-performance messaging layers. 
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CHAPTER V 

DESIGN OF BDM AND BDM-RT 

This chapter describes the design of BDM and BDM-RT. The key aspects of 

their design has been discussed and justified, keeping in view their differing goals 

of performance and predictability. This chapter is a precursor to the next chapter 

that discusses the impact of BDM's design on its predictability and that of BDM- 

RT's design on its performance. 

5.1    Messaging Protocol 

Both BDM and BDM-RT use the BDM unreliable protocol (Henley et al. 1997) 

for message transfer, in keeping with Real-Time Channel semantics (Indiresan, 

Mehra, and Shin 1995). A certain degree of reliability is achieved by the reliable 

Myrinet link layer which offers bit-errors as low as 1 error in 1015 bits transmitted. 

The protocol is simple and involves no handshake, acknowledgment, or flow control. 

When data is ready to be sent, the MCP at the sender's node initiates a network 

send DMA (sDMA). At the receiver's node, the MCP detects the incoming packet 

and issues a network receive DMA (rDMA). 

5.2    BDM design 

BDM for PromisQoS evolved from porting the original BDM software (Henley 

et al. 1997) for Solaris. However, certain aspects of its original design have been 

changed to exploit the differences between the two Operating Systems and between 
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Intel and UltraSparc hardware architectures. The porting and design changes were 

implemented as a part of this thesis, work. 

5.2.1 BDM queues 

BDM maintains five queues to buffer incoming and outgoing messages. These 

queues are shown in the table 5.1, with a brief description of each queue. The 

queues SBQ, SLQ, RBQ, RLQ, and WAQ are similar to their counterparts in 

the original BDM (Henley et al. 1997), but are not identical in terms of the 

status of user data associated with buffers in these queues. The elements in these 

queues contain pointers to free or filled LANai buffers. In addition, they contain 

information about each LANai buffer's "shadow" buffer on the host. Shadow 

buffers are DMAable buffers on the host that have a one-to-one mapping with 

every LANai buffer. Shadow buffers are used by BDM to transfer data directly to 

or from LANai memory via PCI DMA. 

5.2.2 Message flow 

To send a message, the sender first allocates a free buffer using 

BDM_Frame_malloc(). This function provides the user with a handle to a free 

LANai send buffer and its DMAable "shadow" buffer on the host from SBQ. After 

filling the shadow buffer with user data, the function BDM_Pramejsend() is called. 

This causes the send buffer and its shadow buffer to be placed in SLQ. The MCP 

in its mainloop pulls this buffer off the SLQ and initiates a PCI DMA to transfer 

user data from the shadow buffer in the host to its corresponding LANai buffer. 

Upon completion of the DMA transfer, the MCP initiates another DMA (sDMA) 

to send the data into the network. After the data has been completely transferred 
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Table 5.1: BDM Queues 

Queue    Queue Name Description Producer    Consumer 
SBQ     Send Buffer Queue Queue of free send-buffers MCP Host 
SLQ      Send LANai Queue        Queue of send-buffers with        Host MCP 

valid   user   data   in   the 
"shadow"   buffers   on   the 
host 

RBQ     Receive Buffer Queue    Queue    of   free    receive-       Host MCP 
buffers 

RLQ     Receive LANai Queue   Queue   of   receive-buffers      MCP Host 
with   valid   data   in   the 
LANai buffer 

WAQ    Wait for Ack Queue       Queue    of    filled    send-       MCP MCP 
buffers    that    have    been 
already sent by a reliable 
protocol and awaiting an 
acknowledgment from the 
receiver 

out the network, the LANai buffer - shadow buffer pair is put back into SBQ. 

Figure 5.1 shows the various states of a send buffer. 

On the receiver's side, the MCP allocates a receive buffer from RBQ and checks 

for arriving network traffic in its mainloop. Upon detection of message arrival, the 

MCP performs a network receive DMA (rDMA) to transfer data into LANai buffer 

space. The message is then transferred to the LANai buffer's shadow location on 

the host by initiating a PCI DMA transfer. Upon completion of this DMA, the 

MCP puts the buffer pair into RLQ. The host program calls BDM_Frame_recv() 

to receive this message, and subsequently frees the buffer into RBQ by calling 

BDM_Frame_free(). Figure 5.2 shows the various states of a receive buffer. 
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(Host) BDM_Frame_malloc 
.calls SBQ_Get 

(Host) Fills data 

Free Buffer is addei 
to tail of SBQ 

(MCP) Iinitiates network 
send DMA, detects completion 
and calls SBQ_Put 

(Host) BDM_Frame_send() 
calls SLQ_Put 

Pa DMA and 
detects completion 

LANal Queues 

SBQ: Send Buffer Queue (free bufs) 

SLQ: Send LANai Queue (filled bufs) 

Figure 5.1: BDM Send Queues 

5.2.3   Message receipt 

5.2.3.1 Polling vs. interrupt-based 

BDM uses polling to detect the receipt of messages. The trade-offs involved 

between polling arid interrupt based receipt has been discussed in section 4.1.4. In 

brief, BDM uses polling to tradeoff processor overhead for better latency. 

5.2.3.2 The receive function 

BDM messages are received via the function BDM_Frame_recv(). A call to 

BDM_Frame_recv() looks for a received message that has already been transferred 

to the host. The BDM MCP transfers all received messages to the host as soon 

as they are received. A call to BDM_Frame_recv() succeeds if there is at least one 

message in a shadow receive buffer on the host. 
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(MCP) Calls RBQ_Get (MCP) Receives network_ 
data (rDMA) 

Buffer is reinoved\ ___»/   L-ANai buffer 
from the front of   ) *\  is filled 
RBQ ,;-■ 

(Host) Uses data and 
calls BDM_Frame_freeO 
which calls RBQ_Put 

(MCP) Initiates 
PQ DMA and 
detects completion. 

(Host) BDM_Framej 
calls RLQ_Get LANai Queues 

RBQ: Receive Buffer Queue (free bufs) 

RLQ: Receive LANai Queue (filled bufs) 

Figure 5.2: BDM Receive Queues 

Rationale: In this design of message receipt, the MCP transfers incoming data 

to shadow buffers on the host in a best-effort fashion without waiting for the host 

to call the receive function. An alternative design is to cause BDMJFVame_recv() 

to look for messages received and buffered in the LANai itself, and then request 

the MCP to initiate a DMA transfer to the host. The receive function should then 

detect DMA completion and return. The chosen design is better as compared to the 

cited alternative for the following reasons: The message latency is better because 

we do not need any LANai memory accesses across the PCI bus either to detect a 

received message or to initiate PCI DMA transfer or detect its completion. Latency 

is also reduced by minimizing the time spent by received messages in the LANai 

buffers before being transferred to the host. Lastly, we get better bandwidth by 

avoiding blocking in the receive function for the duration of the PCI DMA transfer. 
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Packets 
(rDMA) 

PQ DMA 

CPU Slot 

BDM_Frame_recV() 

Time 

Figure 5.3: Receive Semantics for BDM 

5.2.4   Host-LANai data transfer 

BDM uses PCI DMA rather than PIO for all transfers between host and LANai 

memory. Initiation and detection of completion of DMA transfers is done by the 

MCP. 

The choice of performing DMA over PIO is best for bandwidth because of 

superior PCI DMA rates as compared to CPU assisted copy on our architecture 2.1. 

The bandwidth for both DMA and PIO are shown in figure 4.2. Because of superior 

bandwidth for both reads and writes, PCI DMA is used at both the sender's and 

receiver's end. However, it must be noted that PIO is better than DMA for short 

message latency, because of the absence of fixed DMA set-up overheads. Thus, it 

is best to use a poly-algorithm that chooses between PIO and DMA based on the 

message size. 
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Figure 5.4: Send Semantics for BDM 

5.2.5    Message receipt order 

All queues in BDM are FIFOs. BDM_Frame_recv() returns messages in the 

order they arrived at the LANai. No tag-based de-multiplexing is implemented, as 

it not directly related to its primary goal of reliable and efficient communication. 

Such a de-multiplexing mechanism can always be implemented at a higher layer if 

desired by applications, though at some cost of performance. 

5.3    BDM-RT design 

This section outlines the key design aspects of BDM-RT, given its goals of 

predictable and QoS-sensitive communication. Performance is also important, but 

is a secondary goal. 
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5.3.1   BDM-RT queues 

BDM-RT maintains three buffer queues for managing incoming and outgoing 

messages - SBQ, SLQ, and RBQ. These are identical to the ones in BDM described 

in 5.2.1. RLQ is replaced by DLL - a linked-list of filled LANai buffers. WAQ 

is absent because of the unreliable protocol used in Channel communication. 

BDM-RT also maintains another linked-list DBL, which is a list of free structures 

containing information useful for PCI DMA in addition to a pointer to a free buffer 

from RBQ. These queues and lists are shown in table 5.2, with a brief description 

of each entity. 

Table 5.2: BDM-RT Queues and Lists 

Queue Queue Name Description Producer Consumer 
SBQ Send Buffer Queue Queue of free send-buffers MCP Host 
SLQ Send LANai Queue Queue of send-buffers with 

valid   user   data   in   the 
"shadow"   buffer   on   the 
host 

Host MCP 

RBQ Receive Buffer Queue Queue    of    free    receive 
buffers 

Host MCP 

DBL DMA Buffer List Linked list of free receive 
buffers        with        DMA 
information 

.MCP MCP 

DLL DMA LANai List Linked list of LANai receive 
buffers with valid user data 
ready to be transferred to 
the host upon request 

MCP MCP 

5.3.2   Message flow 

On the send side, the message flow is similar to that described in BDM 

design in 5.2.2. The only difference on the send side is that the send function 

BDMRT_Frame_send() returns only after waiting for the sent message to be 

transferred into LANai memory.   Figure 5.1 shows the various states of a send 
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buffer. On the receiver's side, the MCP allocates a receive buffer from RBQ 

and a DMA-info element from DBL and checks for arriving network traffic in 

its mainloop. After receiving data, the MCP fills the received tag information 

and buffer address into the allocated DMA-info element and places it in DLL. 

When the host calls BDMRT_Frame_recv() with a tag, the MCP searches DLL 

for the earliest message received with the specified tag. If found, the message 

is transferred to the host buffer via PCI DMA. Upon completion of this DMA, 

the MCP puts the DMA info element into DBL and signals the host by setting a 

shared flag. The call to BDMRT_Frame_recv() returns successfully and returns a 

pointer to the received message. If a message with the specified tag is not found, 

the MCP signals failure information to the host, and BDM_Frame_recv() returns 

failure. After a successful receive, the host frees the buffer into RBQ by calling 

BDMRT_Frame_free(). Figure 5.5 shows the various states of a receive buffer. 

(MCP) Calls RBQ_Get (MCP) Receives network 
data(rDMA) 

removed \ J   LANai buffer 
is filled 

(Host) Uses data and 
calls BDM_Erame_free() 
which calls RBQ_Put 

(MCP) Initiates 
PQ DMA and 
detects completion. 

(Host) BDM_Frame_recv 
calls RLQ_Get LANai Queues 

RBQ: Receive Buffer Queue (free bufs) 

RLQ: Receive LANai Queue (filled bufs) 

Figure 5.5: BDM-RT Receive Queues and Lists 
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Rationale: The message flow is based on synchronizing local resource accesses 

with the local CPU schedules. Network protocol processing is tightly coupled 

with the CPU schedules to minimize contention for locally shared resources. The 

message flow is also designed to minimize contention of globally shared resources 

- namely the switch and network bandwidth - by adopting globally synchronized 

message transfers. Notice that by synchronizing the send-side host-to-LANai DMA 

transfer with the sending task's CPU schedule, and the receive-side transfer to the 

receiving task's CPU schedule we use a mixture of "push" and "pull" models of 

communication. At the sender's node, the data is "pushed" to the local LANai 

buffers in accordance with its schedule, while the data is "pulled" out of the 

receiver's local LANai buffers only after the process is scheduled locally on the 

CPU. The key aspect, of course, is that predictable message transfer between the 

two LANai interfaces has to be ensured. This is achieved by globally scheduling 

all contending senders across the network using BDM-RT's fine grain global clock. 

Combined with bounded-time protocol processing at the MCP, this will ensure 

that no two messages with the same destination port will arrive at a switch at the 

same time. 

5.3.3   Message receipt 

BDM-RT uses polling rather than interrupts in keeping with the philosophy of 

the time-based real-time Operating System PromisQoS. In a time-based system, 

all events such as message receipt, are expected to occur at their scheduled time- 

intervals which precludes asynchronous events such as interrupts. Message receipt 

at the host occurs as follows: A call to the receive function BDMRT_Frame_recv() 

sets a flag on the LANai.   Upon detecting this set flag, the MCP searches the 
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list of received messages on the LANai for a received message that matches the 

requested tag. Then the MCP sets another shared flag to indicate the.result of the 

search, and initiates a PCI DMA transfer to the host if found. If found, the host 

waits for the estimated duration of PCI DMA before polling for DMA completion 

at regular intervals of 5 fisec. If no matching message was found, the function 

BDMRT_Framej-ecv() returns failure. 

Rationale: The three main aspects of this receive semantics are as follows: PCI 

DMA occurs only after a call to BDMRT_Frame_recv(), the MCP initiates and 

finalizes DMA transfers, and the BDMRTJFrame_recv() function blocks the host 

CPU until the transfer is complete. The rationale for performing PCI DMA only 

upon a call to BDMRT_Frame_recv() is to couple the PCI bus resource to the host 

CPU, which itself is managed by a real-time scheduler. This coupling automatically 

leads to a QoS-sensitive management of the PCI bus as it becomes a controlled 

resource (Lee et al. 1996) with the host CPU as the controlling resource (Lee et 

al. 1996). 

For better overall latency, the MCP initiates DMA and detects its completion, 

instead of the host library. However, latency jitter is introduced because of the time 

that elapses between the host setting the ready flag and the MCP detecting the set 

flag in its mainloop. This jitter component is absent if the host directly initiates 

DMA by writing to LANai DMA registers. The rationale for choosing the MCP 

to initiate DMA is that the maximum jitter introduced by this was empirically 

measured to be less than the latency overhead introduced by the host directly 

initiating DMA. A DMA transfer requires the writing of four LANai registers: 

the source address, the destination address, the DMA direction, and the number 

of bytes to transfer.   The latency of a single LANai DMA, register read/write 
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operation across the PCI bus (i.e., from the host) is as high as 5 //sec,' while it 

is less than 0.1 //sec when done from the MCP. Thus if the host sets up a DMA, 

we incur a 20 /xsec latency increase. On the other hand, the maximum measured 

interval between two successive polling operations in the MCP to detect if the host 

has set the ready flag is approximately 6-8 //sec, which is a clear performance gain. 

BDM-RT performs what we have termed as "blocking DMA" transfers between 

the LANai and Host. The host CPU is blocked by the receiving BDM-RT task 

during the entire duration of a PCI DMA transfer. The main reason for this is 

to disallow potential PCI bus users from being scheduled on the CPU during an 

on-going Myrinet PCI DMA. This greatly reduces PCI bus contention from non- 

real-time Linux applications serviced by the Ethernet and SCSI drivers, leading to 

an improvement in DMA latency predictability. 

"Blocking DMA" represents a classic tradeoff between performance and 

predictability. CPU utilization and overlap of computation and communication 

are traded off for better predictability of DMA latency. For short transfers, the 

blocking duration is acceptably low (w 5 /zsec for transfers up to 512 bytes). For 

long messages, this involves greater wastage of CPU time (« 62 //sec for 8000 

bytes). However, compared to Programmed I/O (w 280 fj,sec for 8000 bytes), 

"blocking DMA" still consumes significantly lesser CPU time. 

5.3.4   Host-LANai data transfer 

BDM-RT uses PCI DMA rather than PIO because performance is also a 

goal. BDM-RT uses "blocking DMA" semantics for both LANai-to-host and 

host-to-LANai PCI DMA. A call to BDMRT_Frame-send() sets a ready flag 

on LANai memory.    When the MCP detects this flag,  it initiates a DMA 
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Figure 5.6: Receive Semantics for BDM-RT 

transfer. BDMRT_Frame-send() returns after holding the CPU idle for the 

estimated average duration of PCI DMA for the given message length (calculated 

empirically). Note that although this is similar to the blocking nature of the 

receive function, BDMRT_Frame_send() does not wait until the actual completion 

of the DMA unlike BDMRT_Frame_recv(). Figure 5.7 illustrates the time-line of 

activities associated at the send side. 

Rationale: "Blocking DMA" improves the predictability of DMA latency and 

consequently the predictability of the overall message latency as discussed for 

receive side LANai-to-host PCI DMA. The reasons for avoiding blocking until the 

actual completion of host-to-LANai DMA are (a) to avoid extra processor overhead 

associated with the host detecting the DMA completion, and (b) to avoid the ill- 

effects of polling (for detecting DMA completion) on the jitter of the PCI DMA 

latency. BDMRT_Frame_send() instead blocks until the average duration of PCI 
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Figure 5.7: Send Semantics for BDM-RT 

DMA latency elapses. In the worst case, BDMRT_Framejsend() still polices the 

major part of the PCI DMA transfer even if the actual transfer duration exceeds 

the estimated average. 

5.3.5   Resource management 

The chief resources required to be managed by BDM-RT to provide QoS- 

sensitive communication to various real-time tasks are listed below. 

• Network bandwidth, 

• PCI bandwidth, 

• LANai buffer space, and 

• LANai CPU time. 
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The following sections describe how each of these resources is managed by 

BDM-RT. 

5.3.5.1 Network bandwidth 

Network bandwidth deprivation is mainly caused when a message blocks at 

the switch because of contention from another message with the same out-port. 

Network bandwidth is managed by preparing message schedules based on a fine- 

grain global clock. BDM-RT provides a mechanism for high-quality transmission 

of periodic clock synchronization messages, to facilitate the implementation of a 

high accuracy global clock. This was described in section 2.2.1. 

5.3.5.2 PCI bandwidth 

The LANai4.x PCI DMA engine can perform one DMA transfer at a time, 

in half-duplex fashion1. Thus bus contention can exist between sending and/or 

receiving BDM RT tasks. PCI bandwidth is managed among BDM-RT tasks by 

performing PCI DMA transfers during a task's CPU time. This totally eliminates 

PCI bus contention between BDM-RT tasks, and greatly reduces the effect of 

bus contention from the PCI ethernet device transferring non-BDM-RT best-effort 

Linux traffic. 

5.3.5.3 LANai buffer space 

Ideally, it is desirable to allocate a separate buffer pool for each MPI/RT 

channel task. Because of limited memory on the LANai interface, this solution 

does not scale well, although it provides good resource isolation.  LANai buffer 

2LANai5.x and higher change this to allow two DMAs, only one progressing per unit time. 



space is organized in send and receive queues as described in section 5.3.1. The 

limit on LANai buffer space imposes an extra constraint on message scheduling in 

order to ensure that the receiver's buffers do not overflow at any point in time. 

This is not a trivial problem, particularly when one scales to larger networks. 

5.3.5.4   LANai CPU time 

LANai CPU time is spent mainly between protocol processing and initiation 

and completion of DMA transfers to and from the host and network. The LANai 

processor has its own 32-bit Real Time Clock that is not synchronized to the host 

clock. Because of the absence of a view of global time, the MCP does not attempt 

to schedule protocol processing or DMA activity. Instead, it provides bounded 

response time to all events by avoiding any blocking activity in its mainloop. For 

example, the MCP never blocks on any type of DMA to ensure that other messages 

waiting to be processed are serviced with bounded latency. 

5.3.6   Priority inversion 

BDM-RT avoids priority inversion by (a) embedding most of the protocol 

processing overhead in the tasks' CPU time and by (b) allowing out-of-order receipt 

of messages. 

5.3.7   Comparison with FM-QoS 

FM-QoS (Connelly and Chien 1997) was mentioned as the only known 

implementation of a real-time messaging layer on Myrinet and was described in 

section 3.7.   To highlight BDM-RT as one the significant contributions of this 
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thesis work, BDM-RT is compared to FM-QoS with respect to predictability and 

performance overhead. 

While FM-QoS guarantees bounded latencies between LANai interfaces, BDM- 

RT goes a step further to guarantee bounded end-to-end latency. This is a result 

of explicit PCI bus management and bounded MCP response-time in BDM-RT. 

BDM-RT and FM-QoS differ in their approaches to provide global synchronization. 

BDM-RT tightly couples link schedules with CPU schedules that are based on a 

global clock (see section 2.2.1) at the host. On the other hand, FM-QoS de-couples 

the network processor from the host processor and schedules link traffic based on 

a global view of time at the network interface. Consequently, FM-QoS facilitates 

conflict-free link traffic schedules, while BDM-RT facilitates conflict-free end-to- 

end message schedules. 

FM-QoS views network bandwidth as a series of slots (Connelly and Chien 

1997), each of which has to be fully alloted to a single process (or channel). 

The granularity of clock synchronization in FM-QoS is dependent on the chosen 

duration of slots. For a realistic slot duration of 12 //sec (Connelly and Chien 1997), 

self-synchronizing traffic can have periodicities between 12 and 36 milliseconds 

(Connelly and Chien 1997) and can yield accuracies of about ±6 /isec (half the 

slot duration). In comparison, BDM-RT implements a global clock accuracy 

of ±4 //sec with re-synchronizing periods as large as 1 second. In addition, 

re-synchronization traffic in BDM-RT consists of 12-byte sized clock messages 

compared to significantly longer self-synchronizing messages in FM-QoS (e.g., 2 

KB sized messages for 12 //sec slots). Consequently, the overhead for BDM-RT 

clock synchronization is significantly lesser than that reported for FM-QoS by 

Connelly and Chien (1997). For example, on a 8-node, 1-switch network with clock 
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drifts of 200ppm, BDM-RT consumes less than 140 /xsec of link time every second 

amounting to an overhead of « 0.014%. FM-QoS incurs an overhead of 0.32% 

(Connelly and Chien 1997) for the same configuration and comparable accuracy. 

The overhead of the FM-QoS synchronization technique for multiple-switch 

networks is not clear from the available literature. Self-synchronizing schedules 

become complex in the presence of multiple switches (Connelly and Chien 1997). 

Such a problem does not with'BDM-RT arise because of the relative simplicity of 

the master-slave synchronization scheme adopted by the global clock algorithm. 

Although the synchronization overhead in BDM-RT increases linearly with the 

number of nodes in the network, the absolute overhead on link bandwidth works 

out to be less than 0.2% for networks with as many as 100 nodes. 

5.4    Summary 

The key design components of BDM and BDM-RT were presented in this 

chapter. A rationale was provided for all adopted design choices in BDM and 

BDM-RT. 

BDM was ported to PromisQoS as a part of this thesis work to study its 

performance and predictability. BDM performs strictly FIFO queue processing 

to minimize overhead. The message flow in BDM involves PCI DMA transfers 

initiated by the MCP in a work-conserving fashion. The send function sets a flag 

on the LANai and returns, while the actual PCI DMA transfer takes place when the 

MCP detects the set flag. The receive function BDM_Frame_recv() returns the first 

message that has been fully transferred into host memory. These design choices 

are governed by the performance goals of low latency, low processor overhead, and 

high bandwidth. 
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BDM-RT was designed and implemented as a part of this thesis work to provide 

hard real-time communication for MPI/RT Time-based Channels (Kanevsky, 

Skjellum, and Watts 1997). It is the first known hard real-time messaging layer 

on Myrinet. BDM-RT delivers messages in FIFO order, but allows for a tag-based 

demultiplexing scheme at the receiver's end. PCI DMA activity in BDM-RT is 

synchronized with the send and receive functions that block during DMA transfers. 

BDM-RT has explicit support for high-quality transmission of clock messages to 

allow the implementation of a fine grain global clock. The abovementioned design 

components improve the predictability of BDM-RT message latency and minimize 

contention of shared resources. 

A comparison of BDM-RT with the only other real-time Myrinet messaging 

layer FM-QoS shows that BDM-RT goes beyond FM-QoS to provide predictable 

end-to-end latency. Additionally, the global clock overhead of BDM-RT is about an 

order of magnitude lesser than the synchronization overhead incurred by FM-QoS 

for comparable accuracies. 

Having presented the detailed design of BDM and BDM-RT, the next chapter 

analyzes their design differences with respect to predictability and performance. 
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CHAPTER VI 

COMPARISON OF BDM AND BDM-RT 

This chapter demonstrates the fundamental dichotomy between the low-level 

design of a real-time messaging layer and that of a high-performance messaging 

layer. BDM, which was designed for performance, has been analyzed with respect 

to its unsuitability for real-time message transfer. The various components of 

BDM that primarily enhance performance but negatively impact time-lines are 

discussed. Likewise, aspects of design in BDM-RT that enhance its predictability 

are evaluated for their performance. In this chapter we compare and contrast 

design choices made for BDM and BDM-RT and their effect on performance and 

timeliness of message delivery. It should be noted that BDM-RT evolved from 

BDM by modifying its design to make BDM-RT predictable and QoS-sensitive. 

6.1    Performance-predictability trade-offs 

This section gives some background on the requirement of trade-offs between 

predictability and performance for messaging layers built on COTS platforms. 

Games et al. (1995) have addressed the question of whether general purpose 

commercial massively parallel processors (MPPs) can be used for computationally 

intensive real-time applications. The study focused around real-time scheduling of 

communication between processing nodes, and providing the desired predictability 

without undue sacrifice of performance (Games et al. 1995). Myrinet clusters 

of general purpose desktops bear strong resemblance to MPPs in terms of the 
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underlying network characteristics. It is clear from the analysis of MPPs by Games 

et al. (1995) that the high-capacity of Myrinet-like networks does not necessarily 

translate into predictable communications performance. 

Although performance trade-offs are not always necessary for real-time 

communication, they are often required because of hardware architectural 

constraints. As is the case with Myrinet and with COTS platforms, the hardware 

offers minimal or no provisions for timely accesses to resources. Consequently, it 

becomes the responsibility of real-time software to make appropriate design choices 

potentially at the cost of performance. As an example, consider a hypothetical 

activity of performing periodic DMA transfers between host and LANai memory 

at a Myrinet interface. For best predictability, the transfer should occur during a 

scheduled time-interval based on the host's APIC timer value. Using the on-board 

LANai DMA engine for DMA transfers, there is a choice between using the host 

or the MCP to initiate the transfer. For best timeliness, the host should initiate 

the DMA transfer because the host can access APIC timer values much more 

accurately than the MCP. But with regard to performance, this degrades message 

transfer latency because access to DMA registers from the host is much slower 

than access from the MCP. Here, the conflict between performance and timeliness 

arises because of the unavailability of a fine-grain clock on the LANai board. 

As a second example, access priorities (Myricom Inc. 1996) govern accesses to 

LANai memory by the LANai processor, by the host processor, and by the on- 

board DMA engines. In the absence of other PCI bus contenders, the access-time 

for the host processor to LANai memory is most predictable as it is of highest 

priority, but is also the slowest as it involves an access across the PCI bus. This 

makes accesses from the host more predictable, but poor in terms of performance. 
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Modern systems provide a good level of flexibility by supporting multiple 

configurations of system parameters at the BIOS level. Appendix A contains a 

discussion on exploiting the programmability of PCI configuration registers (Solari 

and Willse 1998) and other hardware solutions to improve the predictability of the 

system. None of the hardware/firmware solutions proposed in appendix A were 

adopted as they are highly dependent on the adherence of device manufacturers 

to the PCI standard and sometimes require specialized hardware. 

6.2    BDM and BDM-RT: Design differences 

In this section, the chief components of BDM and BDM-RT are compared and 

contrasted. The analysis of BDM and BDM-RT design is organized as follows: For 

each design component, the choice of design adopted by BDM is first described 

and then justified by providing the design rationale. The design is then evaluated 

with respect to its (un)suitability to predictable message passing. On similar lines, 

each design component of BDM-RT is described and justified. The design is then 

evaluated with respect to its effect on the performance of the system. It will be 

shown that in most cases, BDM is Unsuited for real-time communication and that 

BDM-RT makes performance tradeoffs to achieve the desired predictability. 

3.2.1   MCP main-loop 

As stated in chapter 2, the Myrinet Control Program (MCP) runs on the LANai 

processor and buffers data going out of the host and coming in from the network. 

An MCP typically runs in an infinite loop (the main-loop), handing off to and 

receiving buffers from the host library and the network. 
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6.2.1.1   BDM 

A simplified pseudocode for the BDM-MCP main-loop is shown below: 

1 while (1) 
2 do 
3 /* Sending messages */ 
4 if (An initiated network send DMA has completed) or 
5 (No network send DMA was initiated) 
6 then 
7 /* Sending: Buffer management */. 
8 if (An initiated network send DMA has completed) 
9 then 
10 Put buffer back into free-send-buffer-queue 
11 fi 
12 
13 /* Sending: To Network*/ 
14 if (An initiated Host-»LANai PCI DMA has completed) 
15 then 
16 Start DMAing the buffer out the network 
17 fi 
18 
19 /* Sending: Host->LANai */ 
20 if (No Host->LANai PCI DMA is in progress) and 
21 (Host has queued any buffers in send-buffer-queue) 
22 then 
23 Wait for any ongoing LANai-»Host PCI DMA 
24 and Hand buffer to host. /* Blocking */ 
25 Initiate Host-^LANai PCI DMA for the first 
26 buffer in the send queue. 
27 fi 
28 fi 
29 
30 /* Receiving: From network */ 
31 if (Message is waiting to be received from the network) 
32 then 
33 Initiate receive-DMA 
34 Loop until DMA finishes /* Blocking */ 
35 
36 /* Receiving: LANai-»Host */ 
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37 if (LANai->Host or Host-»LANai PCI DMA is in progress) 
38 then 
39 wait for PCI DMA completion /* Blocking */ 
40 fi 
41 Initiate LANai-+Host PCI DMA. 
42 fi 
43 
44 /* Receiving: LANai-»Host */ 
45 if (An initiated LANai-^Host PCI DMA has completed) 
46 then 
47 Put buffer into received-msg-queue on host 
48 fi 
49 done /* while */ 

Rationale: As is evident from the pseudo-code, the MCP essentially manages 

sending and receiving data using the three on-board DMA engines and buffer 

queues on LANai buffer space. BDM-MCP is designed for minimal message 

latency. Highest priority is given to servicing received messages so as to minimize 

receive-buffer overflows and consequent re-transmission leading to performance- 

loss. At three points in the code (commented as "blocking")» tne MCP waits on 

the completion of DMAs. A blocking network receive DMA is used to reduce 

message latency. The other two waits for completion of previously initiated PCI 

DMA transfers are necessary to avoid starvation of LANai->-Host traffic in the 

presence of potentially too many back-to-back Host-^LANai transfers and vice 

versa. (Access to the PCI bus is basically half-duplex because a single DMA 

engine that manages both directions). BDM uses buffer queues on the LANai with 

"shadow buffers" allocated in DMAable memory on the host. For every buffer 

on LANai memory, there is a corresponding "shadow buffer" on the host that 

goes through the same states as the original buffer. The notion of shadow buffers 

simplifies queue management between MCP and the host library. When a message 
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is received into a LANai buffer it is DMA-ed to its shadow location, after which 

it becomes available to the host (upon a call to BDM_Frame_recv()). The MCP 

initiates and winds up PCI DMA transfers, instead of the host library, because 

access latency for DMA engine registers (on-board) is much lower from the MCP 

as compared to that from host CPU. 

Effect on predictability: The three segments of code where the MCP waits on 

the completion are clearly detrimental to the predictability of protocol processing 

latency and message latency in general. Considerable jitter in message latency can 

result because the MCP may be busy waiting on the DMA completion of another 

packet. For example, if the host puts a message into the send-buffer-queue and 

the MCP has just begun to DMA a received message, significant time will have 

passed before the MCP detects the presence of this buffer in the send-buffer-queue. 

Let us say, the host sends a 100 Byte message, and that an 8KByte packet arrives 

exactly when the host places the buffer in the send-buffer-queue. The MCP can 

spend as much as 50 //sec on the blocking receive DMA (line 34 of pseudo-code) 

assuming a DMA bandwidth of 160 MB/sec. Let us further assume that another 

8KByte message was received just before this one. The MCP can then spend up to 

30 //sec waiting for the LANai-*Host PCI transfer (line 39) to complete. (It takes 

80 //sec for a PCI DMA assuming a bandwidth of 100MB/sec, of which at least 

50 //sec have passed during the above mentioned network receive DMA). Thus, 

the MCP could take as much as 110 //sec before detecting the buffer in the send- 

buffer-queue. Comparing this to the end-to-end message latency of 55 //sec, this is 

clearly an unacceptable latency jitter. Other threats to predictability arising from 

PCI bus contention also exist, and are discussed individually in the sections below. 

98 



6.2.1.2   BDM-RT 

A simplified pseudo-code of the BDM-RT MCP is shown below. 

1 while (1) 
2 do 
3 /* Sending messages */ 
4 if (An initiated network send DMA has completed) or 
5 (No network send DMA was initiated) 
6 then 
7 if (An initiated network send DMA has completed) 
8 then 
9 Put buffer back into free-send-buffer queue 
10 fi 
11 
12 /* Sending: To Network*/ 
13 if (An initiated Host-»LANai PCI DMA has completed) 
14 then 
15 Start DMAing the buffer out the network 
16 fi 
17 

18 /* Sending: Host-^LANai*/ 
19 if (Host has queued a buffer to send) 
20 then 
21 Initiate Host-iLANai PCI DMA for the buffer. 
22 /* We are sure that there is no other ongoing 
23 LANai-»Host or Host-»LANai PCI DMA */-,■ 
24 fi 
25 fi -.■■••' 
26 
27 /* Receiving: From network */ 
28 ,.;if (Message is waiting to be received from the network) 
29 then 
30 Initiate receive-DMA 
31 /* Do not block until DMA finishes */ 
32 fi 
33 
34 /* Receiving: Buffer management */ 
35 if (An initiated network receive DMA has completed) 
36 then 
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37 Queue the buffer in the received-buffers-queue 
38 fi 
39 
40 /* Receiving: LANai-»Host */   , 
41 if (Host asks for a message with a specified TAG) 
42 then 
43 Search received-buffers-queue for message with this tag 
44 If found, initiate LANai-^Host PCI DMA 
45 /* We are sure that there is no other ongoing 
46 LANai->Host or Host->LANai DMA */ 
47 fi 
48 
49 if (An initiated LANai-»Host PCI DMA has completed) 
50 then 
51 Hand buffer to host 
52 fi 
53 done /* while */ 

Design Rationale: The main-loop of the BDM-RT MCP resembles that of 

BDM-MCP to a large extent, mainly because only those portions that affected 

the predictability of protocol processing and message latency were replaced from 

BDM-MCP. It must be noted at this point that the semantics of PCI DMA are 

different for BDM-RT as discussed in the subsection 5.3.4. This allows us to make 

an assumption that the DMA engine is not carrying out a transfer when access 

to the PCI bus is sought (see lines 21,and 44 in the pseudo-code). This removes 

two blocking statements from BDM. As timeliness is of essence to BDM-RT, the 

blocking network receive DMA that existed for minimal latency in BDM has been 

replaced by a non-blocking one. 

Effect on Performance: The replacement of the blocking receive DMA from 

BDM (line 34 in BDM pseudo-code) increases the latency of received messages 

because LANai CPU activity has a negative effect on DMA bandwidth (Myricom 

Inc.   1996).   Non-blocking receive DMAs are particularly detrimental to short- 
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message latencies, because the polling period (time spent in a single main-loop) 

is of the same order («6-8 /zsec) as the receive DMA latency. Other effects 

of performance are examined below in association with the individual design 

components that cause them. 

6.2.2   Message receipt 

6.2.2.1   BDM 

In BDM, a call to BDM_Frame_recv() looks for a received message that has 

already been transferred to the host. The BDM MGP transfers all received 

messages to the host as soon as they are received. A call to BDM_Frame_recv() 

succeeds if there is at least one message in the "shadow" received-messages-queue 

on the host. 

Rationale: The rationale for this design was discussed in 5.2.3.1. 
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Figure 6.1: Comparison of Receive Semantics between BDM and BDM-RT 

Effect on Predictability: As mentioned above, BDM^MCP transfers incoming 

messages to host memory on a best-effort basis. The PCI bus, as a resource, lacks 
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any kind of management as there is no scheduling of PCI DMA transfers. This 

adds to the unpredictability in message latency because of contention of the PCI 

bus both between Myrinet packets (outgoing vs. incoming) and between Myrinet 

packets and other non-real-time PCI traffic. This design can also cause undesired 

priority inversion. For example, let us assume the host sends a high priority packet 

by issuing a call to BDM_Frame_send(). Assume that a low-priority packet is 

received just before this operation and is being DMA-ed to it location in host 

memory. In this case the PCI bus becomes unavailable to the high-priority send- 

packet until the low-priority receive-packet is fully transferred to the host. This 

priority inversion is avoided in BDM-RT by scheduling DMA transfers during a 

task's alloted CPU time. 

6.2.2.2   BDM-RT 

The receive function BDMRT_Frame_recv() involves three steps: 

• The host sets a LANai flag to request the MCP for a message; 

• The MCP looks in DLL (see section 5.5) for a matching message and sets 

another flag indicating the result. It then initiates a PCI DMA of the 

matched message; 

• The host function returns failure if not found. If found, the host waits for 

DMA transfer completion. 

Rationale: The rationale for this design was discussed in 5.3.3. 

Effect on Performance: The three main aspects of BDM-RT receive 

semantics are as follows: (a) PCI DMA occurs only after a call to 

BDMRT_Frame_recv(), (b) The MCP initiates and finalizes DMA transfers, and 
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(c) The BDMRT_flrame_recv() function blocks the host CPU until the transfer is 

complete. 

By delaying the LANai-to-Host PCI DMA until a call to BDMRT_Frame_recv() 

is made, BDM-RT adopts a non-work-conserving approach. In general, this 

approach reduces performance because of potential non usage of the PCI bus in 

the presence of ready data. Message latency increases because of potential idle 

time spent by the received packet in LANai buffers. 

Latency degradation occurs because of the host polling over a DMA completion 

flag that is set by the MCP. The host has to access the polled value across the 

PCI bus and hence interferes with the ongoing transfer by contending for the PCI 

bus. The LANai interface hardware architecture assigns higher access priority to 

the host CPU as compared to the Host-LANai DMA engine (Myricom Inc. 1996). 

This worsens the impact of polling on PCI DMA latency. BDM-RT has however 

been designed to minimize this negative effect by beginning the polling operation 

only after a large fraction (say 90 percent) of the average DMA duration has 

elapsed. Also, once polling begins, the completion flag is examined not more than 

once in 5 //sec, to limit the number of accesses to the PCI bus. This decreases 

the average number of accesses to about half the number in a tightly polled loop 

(average read time is 2.5 //sec). 

The major performance degradation arises because of "blocking DMA." 

Performing blocking DMA greatly degrades bandwidth, by decreasing the amount 

of message-pipelining. Processor utilization is also reduced because useful 

computation cannot be overlapped with an ongoing DMA transfer. In the presence 

of large amounts of contending PCI bus traffic from non-real-time Linux processes, 

blocking DMA promises lower average latency than regular DMA by minimizing 
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the effect of contention. However, in the absence of severe contention, a latency 

degradation rather than enhancement is incurred because of the abovementioned 

three-step receipt procedure. 

6.2.3   Sender-side host to LANai transfer 

6.2.3.1   BDM 

BDM uses PCI DMA initiated by the MCP for all Host-to-LANai DMA 

transfers. Detection of DMA completion is also done by the MCP. When a call 

to BDM_Frame_send() is made, the buffer is put into the ready-to-send queue and 

the function returns immediately. In its main-loop, BDM-MCP detects this buffer 

and initiates a PCI DMA to transfer the data to LANai buffers before sending it 

out the network. The rationale for this design was presented in the BDM Design 

section in 5.2.4. 

CPU Slot     SI 

BDM_Frame_send() 

S2   S3 

PCI DMA 

Sent Packets 
(sDMA) 

CPU Slot       si 

BDMRT_Frame_sendO 

W7////A Pa DMA 5 

inm 

Time Time 

BDM BDM-RT 

Figure 6.2: Comparison of Send Semantics between BDM and BDM-RT 

Effect on Predictability: This design is not suitable for predictable data transfer 

between the host and LANai memory for reasons cited in the sub-section 5.2.4. 
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Potential contention of PCI bus usage can occur from other best effort non-BDM 

Linux processes that may be scheduled on the CPU during the PCI DMA transfer. 

BDM 8DM-RT 
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Figure 6.3: BDM Send Semantics: Contention with Linux for PCI bus 

Figure 6.3 illustrates the effect of such non-real-time PCI traffic on BDM traffic 

PCI DMA latency! The figure shows two messages of equal length sent by two tasks 

SI and S2. For BDM we notice that the latencies LI and L2 are higher and less 

predictable than their BDM counterparts L3 and L4. The unpredictability in the 

BDM-MCP main-loop discussed in 6.2.1.1 can aggravate the problem by adding 

more uncertainty to the actual start time of the PCI DMA. This is shown by the 

duration D for BDM. 
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6.2,3.2   BDM-RT 

BDM-RT uses "blocking DMA" semantics which causes BDMRT_Frame_send() 

to hold the CPU for an empirically calculated average duration of PCI DMA. The 

rationale was presented in the BDM-RT design section under 5.3.4 

Effect on Performance: The main effect of "blocking DMA" is bandwidth 

reduction because of wasted CPU time during the DMA transfer. For high- 

performance applications, blocking communication calls reduce their ability to 

overlap useful computation with communication. In the presence of heavy 

extraneous non-real-time PCI traffic, the overall average latency actually improves 

because of a significantly lower jitter component. 

6.2.4   Header information 

6.2.4.1 BDM 

The BDM packet header is described in Henley et al. (1997). Prominent header 

fields are the route-information, message length, and message protocol type (level 

of reliability). See Henley et al. (1997) for more information on BDM header fields. 

6.2.4.2 BDM-RT 

The BDM-RT packet header consists of a tag field in addition to those present 

in a BDM packet header. 

Rationale: The tag field enables BDM-RT to demultiplex received messages 

among various receiving tasks. The tag field was added to BDM-RT to avoid 

priority inversion of received messages by allowing a high-priority receive to precede 

a low-priority one even though the latter packet arrives at the LANai first. This 
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also allows easier building of MPI/RT channels by using one tag to represent a 

channel throughout an MPI/RT program. 

Effect on performance: In theory, the latency of BDM-RT increases because 

of the increased length of the header. However, the effect of an extra tag field 

(1 byte) in the header is negligible compared to the actual latency of zero-byte 

messages («50//sec). 

6.2.5   Sender-Side message delivery order 

Both BDM and BDM-RT send messages in First-In-First-Out (FIFO) order. At 

the receiver's end, BDM_Frame_recv() returns messages in the order of their receipt 

at the LANai, while BDMRT_Frame_recv() returns the first received message with 

a matching tag. 

6.2.5.1    BDM 

Rationale: FIFO queue processing generally involves the least queue processing 

overhead. Further, these queues are implemented as single-producer single- 

consumer queues with the host library and BDM-MCP playing the roles of producer 

and consumer and require no overhead for mutual exclusion. 

Effect on Predictability: FIFO processing is inherently QoS-insensitive. 

However, if a higher layer is capable of QoS-based prioritizing of messages before 

handing them off to the MCP, QoS-sensitivity can be introduced. At the receiving 

end also, restricting applications to receive messages in their order of arrival at 

the LANai causes undesirable priority inversion. Building a de-multiplexing layer 

above BDM does not alleviate the problem because priority inversion occurs in 
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protocol processing, in our case - the LANai-to-host PCI DMA - done inside the 

BDM layer. 

6.2.5.2   BDM-RT 

Rationale: At first glance, FIFO queuing appears inadequate for BDM-RT to 

function as a QoS-sensitive messaging layer, and to avoid priority inversion (Mehra, 

Indiresan, and Shin 1996) (Lee et al. 1996). However, on closer examination 

FIFO delivery is seen to suffice based on the following reasoning: BDM-RT has 

been designed to efficiently layer time-based MPI/RT channels. The MPI/RT 

Commit () function (Kanevsky, Skjellum, and Watts 1997) will map each channel 

into a PromisQoS RT task and TURTLE scheduler will order the execution of 

send-side channels in a manner consistent with the channel's QoS requirements. 

In other words, channel protocol processing including host-to-LANai DMA on the 

send side will be scheduled in the order of earliest delivery deadlines. The packets 

then undergo minimal processing at the MCP before being sent out in FIFO order. 

Thus messages received from a single node are always in prioritized order. However, 

messages received from different source nodes can still suffer priority inversion if 

the receive function can retrieve messages, only in FIFO fashion. To solve this 

problem, BDM-RT provides for a tag-based receive mechanism. . As long as a 

message has been received at a node's LANai buffers, it can be received immaterial 

of its position in the receive queue. Best-effort tasks do not have explicit support 

in this version of BDM-RT. Jn the presence of best-effort tasks using BDM-RT, 

one FIFO queue will not suffice. One needs at least two separate queues in order to 

mask interference from best-effort tasks and still continue to meet the deadlines of 
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real-time tasks. At the same time, the adopted queue processing strategy should 

be fair to best-effort traffic and not starve it of link or CPU bandwidth. 

Effect on Performance: At the sender's side, there is no performance trade- 

off compared to BDM because of the identical FIFO queuing of messages. Queue 

processing complexity is 6(1). At the receiver's side, the tag-based de-multiplexing 

mechanism involves searching, adding, and deleting nodes in the linked list (DLL) 

of received messages, which is O(n). Alternately, if the linked list was organized 

as a binary search tree, the order of complexity of queue manipulation would be 

6(log2n). In our case, at most 8 buffers can be queued at the receiver's end. 

For N=8, the gain from a binary tree is insignificant, specially compared to the 

overall latency (« 50 //sec) which is nearly two orders of magnitude greater than 

worst-case linked list manipulation overhead (« 1 //sec, based on measured LANai 

instruction execution speeds). 

6.3    Summary , 

Based on the analysis of BDM and BDM-RT design, we see that nearly all 

components of BDM that optimize its performance are unsuitable for real-time 

communication. The converse is also true - components of BDM-RT that enhance 

its predictability involve performance compromises. In particular, the BDM-MCP 

main-loop performs certain blocking operations that decrease the predictability of 

protocol processing delays. BDM lacks explicit management of the PCI bus and 

the Myrinet switch, leading to resource contention. Undesirable priority inversion 

exists due to the FIFO receipt scheme. On the other hand BDM-RT achieves 

predictability at the cost of performance. 
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CHAPTER VII 

EXPERIMENTS, RESULTS, AND ANALYSIS 

This chapter presents the experimental methodology and the results obtained 

from these experiments. The aim of these experiments is to demonstrate the 

validity of the hypothesis and to corroborate the analysis of design for BDM and 

BDM-RT presented in chapter VI. The experiments chiefly compare the timeliness 

and performance of BDM and BDM-RT for various message sizes and message- 

passing scenarios. Most results are based on timing measurements using the global 

clock described in 2.2.1. 

7.1    Experiment setup 

This section describes theiconfiguration in which experiments were performed. 

It also points out the limitations, and estimates the accuracy, and overhead 

involved in gathering performance metrics. 

7.1.1    Hardware and software 

All experiments were performed on a two-node Pentium Pro Myrinet cluster. 

The host and network hardware specifications were also listed in 2.1. Software 

specifications were listed in 2.1.1. The main reasons for limiting the experiment 

platform to a two node, one Myrinet switch is the current state of development of 

PromisQoS, and the global clock. 
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7.1.2   Timers used 

The clock synchronization module provides a 64-bit nano-second resolution 

virtual clock on all slave nodes (see 2.2.1). This clock is based on the 64-bit nano- 

second resolution APIC Time Stamp Counter (found on all Pentium chip-sets) of 

the master node. Test programs use global time-stamps to compute end-to-end 

metrics such as latency, bandwidth, and latency-jitters. 

Internal metrics such as PCI DMA latencies, PCI DMA jitters, and MCP 

processing overhead use the on-board LANai RTC (Myricom Inc. 1996) with a 

resolution of 0.5 fxs: More resolution is desirable in future LANai hardware. 

7.1.3   LANai storage limitation 

Metrics such as PCI DMA latency and MCP processing overhead cannot be 

gathered for long durations because of limited storage space on LANai SRAM. For 

example, on a 1 MB board, about 400 KB of free space is available for metrics. 

Assuming that each metric includes a 32-bit RTC time-stamp and a 32-bit integer 

metric value (totaling to 8 bytes per set), we can record a maximum of 50,000 

sets. Assuming a task with period 500 jusec, this limits the recording duration 

to 25 seconds. The simplest way to overcome this limitation without periodically 

transferring out metric data from LANai memory (which can potentially interfere 

with the RT traffic) is to record only a subset of events. For instance, in the 

measurement of LANai-to-Host DMA latencies, latency is recorded only if it 

exceeds a certain value, i.e the upper bound on latency for that message length. 

This greatly reduces the amount of data that needs to be stored, specially if the 

system meets its latency bounds most of the time. 
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7.1.4   Metric overhead 

Both the host and the LANai introduce processing overhead associated with 

instrumentation for gathering performance metrics by both the host and the MCP. 

The host gathers metrics on the number of PCI DMA transfers that exceeded 

their latency bounds and the total number of PCI DMA transfers performed by a 

program. Test programs also record global time-stamps on the host, for latency and 

bandwidth calculation. Given the high speed of the Pentium processor (200MHz), 

and low access times for the APIC TSC (30-50 ns) the instrumentation overhead is 

negligible compared to the overall host protocol processing time. The MCP gathers 

metrics such as individual PCI DMA latencies, polling duration of the MCP main- 

loop, and individual network DMA latencies and stores them in statically allocated 

LANai memory. A typical metric recording operation consists of recording a time- 

stamp and a metric value at key points in the main-loops such as initiation and 

completion of DMA transfers. The instrumentation overhead was estimated by 

empirically measuring access times for the RTC and LANai memory. It was found 

experimentally that the MCP spends between 3 and 5 percent of its time in a 

main-loop in the instrumentation code. 

7.1.5   Accuracy and error bounds 

As pointed out earlier, all end-to-end time measurements are done using the 

global clock. The global clock itself has an error bound of ±4 //sec in the worst 

case. For latency of long messages (•> 500 bytes), this amounts to less than 5 

percent error. For short messages, the error factor is rather high, but its effect is 

reduced when averaged out over a long duration because of the typical "swinging" 

behavior of clock synchronization error around both sides of the x-axis (see figure 
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2.5). Individual error bounds for each performance metric are discussed in their 

respective sections.  ,; 

For PCI DMA statistics, the error bound on DMA latency is largely governed by 

the time that elapsed betweenthe actual completion of a DMA and its detection by 

the MCP. The MCP main-loop duration has an upper bound of 10-12 //sec. This 

error is unacceptably high, specially because our interest is in measuring DMA 

latency jitters rather than latencies themselves. To reduce polling error, the MCP 

checks for DMA completion at several places in the main-loop instead of just once. 

Using such a scheme, the measurement error is reduced to 3-4 /zsec in the worst 

case (but at the same time adds to instrumentation overhead). 

7.2    Latency measurements 

Latency is measured by recording the global time-stamp at the sender's 

node just before calling BDM(RT)_Frame_send() and at the receiver's node just 

after BDM(RT)_Frame_recv() returns. One-way latency is then computed by 

subtracting the sender's time-stamp from the receiver's time-stamp. The set-up 

used for this experiment is as follows: An RT task S (sender) runs on node A while 

an RT task R (receiver) runs on node B, both with a period of 1 ms. Both processes 

specify a deadline value that is marginally greater than the compute time, thus 

forcing the scheduler to allot CPU time exactly between their specified start-time 

and deadline, every period. Additionally, the sender's start-time is staggered by a 

delay of 50 //sec with respect to the receiver. This is done to ensure that messages 

never arrive at node B before R is scheduled. Such a situation would induce error 

into latency measurements. The latency was averaged over 1000 messages. 
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7.2.1   Expected results 

Both BDM and BDM-RT are expected to have comparable but relatively 

large zero-byte latency because of PCI DMA overhead. BDM-RT is expected 

to have higher latency. This is mainly because of the additional overhead in BDM- 

RT_Frame_recv() owed to (a) the tag-based receive mechanism and (b) performing 

the receive side PCI DMA only after a call to BDM-RT_Frame_recv() is issued. 

Tag based de-multiplexing involves the host writing tag information into LANai 

memory, setting a flag, and examining the flag for status of the received message. 

All three of these operations are performed by the host across the PCI bus (see 

section 6.2.2). There is extra overhead in the MCP also because of link-list traversal 

to identify the tagged message. In BDM, we are able to reduce this overhead to 

just one access across the PCI bus to check if at least one message has been fully 

received into host memory. However, this occurs at the cost of (a) having no tag- 

based de-multiplexing at the receiver's node, and (b) higher latency jitter because 

of the absence PCI traffic scheduling. 

A second cause of latency increase is because of the difference in the network 

receive DMA (rDMA) semantics between BDM and BDM-RT. For best latency, 

when a message arrives BDM-MCP DMAs the entire message and spins until 

DMA completion. In BDM-RT, the MCP initiates the DMA and goes off into its 

main-loop to service other potential data transfers. The effect of this non-blocking 

receive DMA in BDM-RT is specially high on very short messages as the polling 

interval for DMA completion ( 4 to 6 //sec ) becomes comparable to DMA latencies. 
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7.2.2   Actual results 

Figure 7.1 compares the message latency for short messages (length < 512 

bytes). BDM has a zero byte latency of 32 /^sec, while the same is as high as 54 

/xsec for BDM-RT. This latency overhead in BDM-RT was explained above. 

Latency Comparison for Short Messages 
BDM vs. BDM-RT 
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Figure 7.1: Latency for short messages 

Another observation in the latency graphs is that the latency of BDM messages 

rises with increase in message size, whereas it remains more or less constant in 

BDM-RT. The increasing behavior seen in the case of BDM is typical of latency 

curves, and needs no explanation. The reason for BDM-RT's fiat graph is two- 

fold. Firstly, BDM-RT is a real-time messaging layer, so it always budgets no less 

than the worst case latency of messages rounded off to the next higher multiple 
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Mam 

of 5 //sec. Secondly, the receive function minimizes the negative effect of polling 

for DMA completion by polling in steps of 5 /zsec (described in section 6.2.2.2). 

Because of the above reasons, the range of latencies for messages between 0-512 

bytes maps to a single latency. 
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: Figure 7.2: Latency for long messages 

Figure 7.2 compares the latencies of messages for a longer range of message 

lengths. Because both BDM and BDM-RT use PCI DMA for transfers between 

host and LANai memory, their latency graphs look nearly identical over the range 

of message lengths. BDM-RT has an extra latency of about 10 /^sec, because of 

the same overheads described in the previous subsection. 
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7.3    Bandwidth measurements 

Bandwidth is measured by streaming messages from one node and receiving it 

at the other in a tight loop. The set-up used for this experiment is as follows: An 

RT task S (sender) runs on node A while an RT task R (receiver) runs on node 

B, both with a period as large as 10 ms. The period is limited to 10ms to avoid 

CPU contention from the Linux task, which is guaranteed 1ms of every 10ms. 

Task S specifies a CPU Time of 4ms, and task R specifies 4.2 ms to account for 

message latency. Both processes specify a deadline value that is marginally greater 

than their compute time, thus forcing the scheduler to allot CPU time exactly 

between their specified start-time and deadline, every period. Both tasks ask for 

a large chunk of CPU time - approximately 5 ms every period. During the alloted 

CPU time, the sender sends messages in a tight loop consisting of the function 

pair BDM(RT)_Frame_malloc() and BDM(RT)_Frame-send(). Meanwhile, the 

receiver receives messages in a tight loop consisting of calls to the function 

pair BDM(RT)_Frame-recvO and BDM(RT)_Frame_free(). The BDM unreliable 

protocol (Henley et al. 1997) is used for bandwidth measurement because MPI/RT 

Channels will be implemented using this protocol. Using this protocol in a tight 

sending loop can cause receiver-buffer overflows if the receiver is slower than the 

sender, leading to message loss. To get an accurate measure of bandwidth, message 

loss should be avoided by tuning the sender's rate to that of the receiver. This 

involves finding the difference in sender and receiver rates, and adding a suitable 

duration of inactivity in the sender's loop. Tuning the senders rate exactly to 

the receiver's rate is iterative and rather time-consuming to achieve practically. 

As an alternative, unreliable bandwidth was measured as the receiver's rate in 
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the presence of lost messages which do not count for bandwidth calculation. The 

measured bandwidth was averaged over 1000 messages. 

7.3.1   Expected results 

BDM is expected to have significantly better bandwidth than BDM-RT because 

of "blocking" PCI DMA transfers in BDM-RT. In BDM, the BDM_Framej3end() 

call is non-blocking thus allowing the user to queue up PCI DMA transfers while 

one is in progress. In BDM-RT, BDMRT_Framej3end() returns only after the 

holding on to the CPU until the estimated PCI DMA latency elapses. At the 

receiver's side, BDM_Frame_recv() returns a pointer to a message that has already 

been transferred to host memory, while BDMRTJPrame_recv() initiates and waits 

on the completion of DMA between LANai and host memory. 

7.3.2   Actual results 

Figure 7.3 shows the bandwidth of BDM and BDM-RT. The theoretical PCI 

bandwidth for 32-bit, 33MHz PCI is 132 MBytes/sec. BDM achieves about 88 

percent of this bandwidth at 7800 bytes. As expected, BDM-RT has a lower 

bandwidth owed to the "blocking" PCI DMA. 

7.4    Latency jitter 

Quality of Service for MPI/RT Channels consists of providing guaranteed 

bandwidth and a latency bound for channel messages. In this experiment we 

measure end-to-end message latency jitter for BDM and BDM-RT. The latency 

program described in section 7.2 is used for this experiment as well. Disk activity 

is shut off during this experiment to avoid PCI bus contention from the disk driver. 
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Figure 7.3: Bandwidth 

7.4.1    Expected results 

The latency jitter for BDM is expected to be significantly larger than that for 

BDM-RT. The chief source of latency jitter applicable to this experiment is PCI 

bus contention from non-BDM(RT) processes. BDM-RT is designed to minimize 

the effect of PCI bus contention, by disallowing extraneous PCI transfer initiations 

during a BDM-RT PCI transfer (see Chapter 6). In the absence of disk activity, 

BDM-RT is expected to provide a hard bound on the latency jitter, while BDM 

cannot. 
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7.4.2   Actual results 

Figures 7.4 and 7.5 show the end-to-end latencies of BDM and BDM-RT 

for 4KB sized messages. These figures also show the latency incurred in two 

intermediate stages of message transfer: the host-to-LANai and LANai-to-host 

PCI DMA latencies. For BDM, it is clear that the unpredictability in host-to- 

LANai DMA latency is the chief factor influencing the overall latency jitter. This 

jitter component is nearly negligible in the case of BDM-RT. BDM-RT can be seen 

to be better suited for QoS provision than BDM. 
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BDM_RT: End-to-End Latency 
Message size: 4000 bytes. Period: 10ms. 
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7.5    Effect of external traffic 

The effect of other non-BDM(RT) tasks contending with BDM(RT) tasks for 

the PCI bus is measured by introducing synthetic ethernet traffic. The latency 

program is used for this experiment as well. The sending and receiving nodes are 

ping-ed by a third node with 8000 byte packets every 1 second. 

7.5.1    Expected results 

We expect to see clear spikes in PCI DMA latency for BDM, and minimal or 

no effect for BDM-RT, for the reasons cited in the previous section. 
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7.5.2   Actual results 

Figure 7.6 shows the result of artificially induced PCI contention on BDM 

and BDM-RT message latencies. As expected, BDM suffers latency jitters while 

BDM-RT is nearly unaffected. 
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Figure 7.6: Effect of non-real-time ethernet traffic 

7.6    Summary of results 

All experiments yielded expected results and confirm the hypothesis. The QoS 

experiments showed that BDM-RT outperforms BDM in terms of latency jitter 

and immunity to external PCI traffic. BDM is seen to be unsuitable for real- 

time communication because of its inability to meet the fundamental requirement 

of predictable message passing.    Experiments on performance metrics showed 
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that BDM-RT has lower bandwidth and higher latency compared to BDM. In 

summary, BDM is unsuitable for real-time communication, and that BDM-RT 

requires performance tradeoffs to achieve predictability. These results corroborate 

the analysis of the design differences between BDM and BDM-RT from the previous 

chapter. 
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CHAPTER VIII 

CONCLUSIONS 

This thesis hypothesized that a fundamental dichotomy exists between the 

design of low-level real-time and high-performance messaging layers. The 

hypothesis was scoped over the design of a real-time messaging layer with 

performance requirements, over Myrinet clusters of PCs. This thesis is 

applicable in general to networks of COTS computers characterized by high-speed 

communication, low-latency cut-through switching, and a programmable network 

interface. 

The motivation for this work was the requirement for a real-time messaging 

layer with reasonably high performance for the development of a time-based 

Channel implementation of the MPI/RT middleware with QoS support. Myrinet 

was chosen as the network because of its high speed and low bit-error rates. The 

absence of time-based real-time messaging layers on Myrinet and limited past 

research on worm-hole routed networks provided the motivation to design and 

implement BDM-RT - a real-time messaging layer. 

The basic requirements of real-time communication were reviewed in chapter 

3. The goals and design choices for high-performance messaging layers on Myrinet 

were presented in chapter 4. It was seen that BDM shares common design 

goals with other popular Myrinet messaging layers such as FM, GM, BIP, U-Net, 

and VMMC. It was also noted that BDM and all other cited high-performance 
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messaging layers contained few or no mechanisms to address the requirements of 

real-time communication previously presented in chapter 3. 

Chapter 5 presented the detailed design of BDM and BDM-RT and discussed 

the rationale behind their design. BDM-RT is the first known hard real-time 

messaging layer on Myrinet. BDM-RT can provided bounded end-to-end latency 

by adopting several techniques that improve its predictability. BDM-RT isolates 

the shared PCI bus from best-effort traffic by introducing the concept of "blocking 

PCI DMA". BDM-RT supports high-quality transmission of clock messages to 

facilitate the implementation of a fine grain (±4 //sec) global clock with acceptably 

low synchronization overheads. The BDM-RT MCP offers bounded response time 

and bounded protocol-processing time. Combined with the fine grain clock, this 

ensures conflict-free end-to-end message transfer. 

Compared to FM-QoS, the only other known implementation of a QoS based 

messaging layer on Myrinet, BDM-RT was shown to be superior in the following 

aspects. BDM-RT can provide end-to-end guarantees rather than just LANai- 

to-LANai guarantees provided by FM-QoS. The overhead for BDM-RT clock 

synchronization is an order of magnitude less than for the self-synchronizing 

schedules of FM-QoS. The BDM-RT clock synchronization algorithm also appears 

to scale better for multiple-switch networks. 

The validity of the hypothesis was demonstrated in chapter 6 by first pointing 

out that performance-predictability trade-offs are inevitable, given a set of 

hardware architectural constraints. The design of various components of BDM 

and BDM-RT were compared and contrasted. BDM's chosen design was shown 

to have an undesirable effect on its predictability. BDM lacks provisions for 

explicit management of resources such as the PCI bus and Myrinet switch. Traffic 
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isolation is absent in BDM, and protocol processing is neither time-bound nor free 

of undesired priority inversion. Similarly, the goal of predictability in BDM-RT 

was shown to impact its performance negatively. Mechanisms in BDM-RT such as 

"blocking PCI DMA" for resource isolation, bounded-time protocol processing in 

the MCP, and tag-based receiving to avoid priority inversion were shown to lower 

its performance. 

This analysis was corroborated in Chapter 7 with experimental verification of 

performance and QoS parameters of BDM and BDM-RT. The actual results from 

these experiments matched closely with the expected results. BDM-RT shows 

significantly better ability to meet QoS requirements by providing bounded jitter 

on latency and isolation from external non-real-time ethernet traffic. Additionally, 

BDM-RT was seen to have lower bandwidth and higher latency as compared to 

BDM. 

Based on the presented analysis and experimental verification with BDM and 

BDM-RT, and given the degree of similarity in the design and goals of various high 

performance messaging layers such as FM, GM, AM, and BDM, we conclude that 

the hypothesis has been verified to be true. 

8.1    Future work 

It would be interesting to study the applicability of this thesis work 

to other high-speed networking technologies such as GigaNet (GigaNet, Inc. 

2000), ServerNet (Horst and Garcia 1997), and ATM. In networks such as 

GigaNet and ServerNet processing at the network interface is implemented in 

hardware or firmware. On Myrinet, BDM-RT implements predictable end-to- 

end communication by providing bounded response time software (MCP) at the 
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network interface. This ensures that link traffic scheduled by a global clock at the 

host will not encounter resource conflicts at the network medium or at the network 

switches. A study of the predictability of protocol processing at the network 

interface and the predictability of switch fall-throügh times for other high-speed 

networking technologies is the first step towards applying this thesis to them. 
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APPENDIXA 

HARDWARE MECHANISMS FOR PREDICTABILITY 
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Below are some hardware and firmware solutions to achieve predictable PCI 

latency and bandwidth in the presence of bus contention from other non-real-time 

traffic. 

A.l    PCI register initialization 

The Peripheral Component Interconnect (PCI) 2.0 Standard (Solari and Willse 

1998) provides a set of configuration registers that are either initialized by- 

configuration software at boot-up time, or have a hardwired value. Some of the 

PCI configuration registers can be used to mitigate the effects of bus contention 

on the PCI bus access time and PCI DMA latency for Myrinet traffic as described 

below. As a background, PCI registers of significance to this discussion are listed 

below. 

Min_Gnt Min_Gnt is a read-only register applicable only to bus master devices. 

A non-zero value indicates, in multiples of 250ns, how long the master would 

like to retain PCI bus ownership every transaction, for best performance. A 

zero value indicates that the device has no such requirement on ownership 

time-slice. 

MaxJLat MaxXat is a read-only register that specifies how often, in multiples of 

250ns, a device needs to gain access to the PCI bus. 

Master Latency Timer The Master Latency Timer (MLT) prevents bus 

masters from monopolizing the bus. The MLT value defines the minimum 

amount of time, in PCI clock ticks, the bus master is allowed to retain 

ownership of the bus once a transaction starts. The MLT value is permitted 

to be hardwired only if the bus master is incapable of performing more than 

two data phases per transaction (Solari and Willse 1998). Otherwise, MLT 
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should be a read/write register. MaxJLat and Min_Gnt values are normally 

used by boot-up software to determine the MLT value for each device. 

Assigning suitable values for MLT can improve the real-time behavior of 

Myrinet traffic at the cost of sacrificing optimal performance of other devices. 

For instance, by using a high value of MLT for itself, the Myrinet device can 

prevent losing ownership of the bus for that many PCI clock ticks. In combination 

with this, a MLT low value for all other PCI devices will reduce bus acquisition 

latency for the Myrinet device. The feasibility of the above solution is affected 

by the presence of devices in the real world that use a hardwired value for their 

MLT register, although this violates the PCI Standard. This makes it impossible 

to change the MLT register value for such devices. 

A.2    Customizing PCI arbitration 

The PCI 2.0 Standard does not define the arbitration logic to arbitrate access 

requests from different bus masters sharing a PCI bus. It is up to the PCI 

chip-set manufacturer to implement any fair arbitration scheme that does not 

cause a deadlock. The PCI arbiter implements a simple round-robin scheme in 

most commercial chip-sets. Consequently, a solution to improve predictability of 

Myrinet DMA transfers is to use priority-based arbitration, using highest priority 

for the Myrinet DMA bus-master. This option was not chosen because it demands 

specialized hardware, i.e. a customized PCI arbiter or a PCI chip-set with a 

programmable arbiter. This conflicts with one of the goals of PromisQoS - that of 

being based on a COTS platform. 
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A.3    Dual PCI bus 

A possible solution to avoiding bus contention between real-time and non- 

real-time traffic is to use a dual-PCI bus configuration, with a dedicated bus for 

real-time Myrinet traffic. This is acclaimed by researchers in real-time systems as 

the most effective and simple hardware solution in the presence of contention from 

non real-time traffic. This option was also discarded because commercial desk-tops 

do not have such a configuration. 
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APPENDIX B 

BDM AND BDM-RT API 
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A list of relevant functions belonging to the BDM and BDM-RT Application 

Programmers Interface (API) are listed below for easy reference. 

B.l    BDM API Functions 

BDMJFrame_malloc Allocates a send-buffer from a buffer queue. 

BDM_Frame_send Sends a message. 

BDM_Frame_recv Returns the first received message. 

BDM_Frame_free Frees the receive-buffer into a buffer queue. 

B.2    BDM-RT API Functions 

BDMRT_Frame_malloc Allocates a send-buffer from a buffer queue. 

BDMRT_Frame_send Sends a message. 

BDMRT_Frame_recv Returns the first received message with a matching tag. 

BDMRT_Frame_free Frees the receive-buffer into a buffer queue. 
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This report describes a real-time message layer over Myrinet networks. It is 

intended to provide communication support with QoS to upper level layers like MPI/RT. 

In order to minimize development efforts and utilize an existing communication layer's 

features, GM has been chosen as the basis of this project. GM is a Myrinet 

communication layer provided by the vendor of Myrinet gigabits networks - Myricom 

Inc. It is a powerful communication layer with a lot of features like automatic network 

mapping. In order to provide real-time communication, a resource reservation scheme is 

employed for real-time purpose. Corresponding changes are made to the memory 

management and link scheduling of GM for this purpose. The resulting system is 

composed of a modified GM system and a real-time memory management layer. 
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Tests are also conducted to verify the correctness of the system and the real-time 

performance. Conclusions are reached from the test results that the real-time traffic and 

non-real-time      traffic      are      integrated      successfully      in      the      system. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

The QoS (Quality of Service) requirements of applications require that 

middleware provide guaranteed service. MPI/RT (Message Passing Interface/Real-Time) 

is a message-passing interface that is intended to provide guarantees for QoS for data 

communication functions (Cui et al. 1997). It is a real-time analogue of the well-known 

message passing standard - MPI. However middleware like MPI/RT cannot provide 

guaranteed service by itself. It must rely on support from the underlying operating 

system and communication layers. Some research has been done in this area to address 

this problem. Examples include FM-QoS at URJC and BDM-RT in Mississippi State 

University. The objective of this project is to develop a real-time communication layer 

over Myrinet (a gigabits network). The resulting message layer should be able to provide 

guaranteed service to upper-level software such as MPI/RT. 

1.2 Motivation 

Unpredictability in a data transmission is caused by contention over shared 

resources. Contention will cause unpredictable waiting time. There are different ways to 
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solve the contention over shared resources. For example, FM-QoS uses a non-conflicting 

global schedule to avoid contention, to provide predictable service to the upper layer 

(Song and Ghien 1999). But basically, all these ways use resource reservation schemes 

as a basic rule. A resource reservation scheme is composed of two parts: an admission 

control layer and a scheduler (Rajkumar et al. 1998). A detailed introduction to the 

resource reservation schemes will be given in next chapter. Since we already have a 

time-based scheduler working under RT-Linux, the objective of this project is to provide 

a low level communication layer to cooperate with the existing time-based scheduler in 

order to provide guaranteed service. 

1.3 Organization 

The organization of this report is as follows: Chapter 2 gives a literature review 

and some background knowledge. Chapter 3 gives the system architecture of this project. 

Chapter 4 gives a detailed analysis of GM. Implementation details are presented in 

Chapter 5. Finally, in Chapter 6, test results and results analysis are presented. Chapter 7 

presents conclusions and future work. 
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CHAPTER II 

PROBLEM ANALYSIS AND CURRENT SOLUTION 

In the chapter, the problem needing to be solved in order to provide real-time 

communication will be analyzed. The current solutions to solve this problem will also be 

given. 

2.1 Problem analysis 
The   fundamental  issue  in  delivering  quality-of-service  (QoS)   in  network 

communication is resource management (Chien and Kim 1997). As mentioned in chapter 

1, unpredictability in a data transmission is caused by contention over shared resources. 

Resource sharing will result in unpredictable waiting time. In order to provide 

predictable service to applications, the underlying operating system and communication 

sub-layer must employ a certain kind of mechanism to regulate the usage of such shared 

resources. Shared resources involved in a data transmission include CPU (protocol 

processing, packetization, etc), host memory, and network link bandwidth (Rajkumar et 

al. 1998). The task of any real-time communication layer is to solve the contention over 

these shared resources and make the whole transmission predictable. A lot of research 

has been done to solve this problem. Essentially, all these research efforts employ 

resource reservation schemes to address the contention. 
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2.2 Resource reservation scheme 
A resource reservation scheme is designed to enforce the rule that before using 

the shared resources, a user must make a reservation for them first. A reservation is an 

indicator of what time and durations resource is needed (Rajkumar et al. 1998). 

According to the reservation request, the system will make the decision whether to accept 

this request (if the system can meet the requested QoS requirements) or decline this 

request (if the requested QoS requirements cannot be satisfied). Once the request is 

granted, the user is guaranteed to get the required services. Normally, there are two key 

components in resource reservation schemes: one is admission control (this is where the 

decision is made), another is the scheduler (this is the part to enforce the contract made 

by the admission control layer to user applications). The following figure shows the 

system layout in a resource reservation system. 

Real-Time Application 

^-*                     i L ^ 
■»^ 

A—' i r ^\^ 

Admission 
Control 

Time based 
scheduler 

Communication 
layer 

^^ 

Network 

Figure 2.1 System layout of a resource reservation system 

The resource reservation scheme has been employed in many circumstances that 

need guarantees on QoS.    In this section, two examples are given.    One is RSVP 
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(ReSource reservation Protocol).     Another is RT-MACH from  Carnegie Mellon 

University. 

2.3 RSVP 

2.3.1 RSVP introduction 
The resource reservation protocol is an internet protocol intended to provide QoS 

guarantees to end users (Stallings 1997). Network protocols like TCP/IP, UDP/IP, do not 

address any QoS requirements. When it comes to the applications that are QoS sensitive, 

like audio/video transmission, users will often get unacceptable transmission quality. 

RSVP (ReSource reservation Protocol) is proposed to improve delivered quality of 

service under such circumstances. "It is a network control protocol that will allow 

Internet applications to obtain special qualities-of-service (QoS's) for their data flows" 

(Cisco Systems Inc. 1999). The essence of RSVP is to employ a resource reservation 

scheme in order to provide guaranteed service to user applications. RSVP is a transport 

layer protocol in the OSI seven-layer model. It can be used with both IPv4 and IPv6 

(Cisco Systems Inc. 1999). The startup procedure of an RSVP session includes two 

phases (Stallings, 1997). First, the sender will send an RSVP path message to the 

destination. All the intermediate routers will keep a record of the route (including the 

previous router and next router). When the receiver receives this path message, it will 

send out a resource reservation request all the way back to sender. All the intermediate 

routers will allocate resources (include link bandwidth, buffers, CPU time) according to 

the flow specification in this request if the request can be satisfied. Otherwise, the RSVP 

program returns an error indication to the application that originated the request. 
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2.3.2 RSVP components 
RSVP is composed of the following functional components. Each of these has a 

certain task. The first one is called the RSVP daemon which is the main module of 

RSVP. It is responsible for asking the "policy control" and "admission control" for their 

permission to set up the reservation. If permission is granted, the RSVP daemon sets 

parameters in a "packet classifier" and "packet scheduler" in order to obtain the desired 

QoS (Cisco Systems Inc. 1999). 

Policy control is used for authority checking. It will check if the requester is 

allowed to make reservations and what kind of QoS he or she may reserve. 

Admission control is used to evaluate the QoS requirement in the reservation 

request. It will check the current state of the node (host or router) to see if the node has 

sufficient resources to meet the requested QoS requirement. 

The packet classifier is responsible for determining the route and QoS class for 

each incoming data packet. 

The packet scheduler is responsible for scheduling queued packets according to 

their QoS parameters. This is the part responsible for achieving the promised QoS. This 

can be implemented by prioritizing queues of flows, as necessary. 

The system layout of RSVP can be described by following figure. 

Data 

Figure 2.2 System layout of RSVP (Cisco Systems Inc. 1999) 
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2.3.3 RSVP current status 
RSVP was originally conceived by researchers at the University of Southern 

California Information Sciences Institute and Xerox Palo Alto Research Center (Cisco 

Systems Inc. 1999). The Internet Engineering Task Force (IETF) is now working toward 

standardization through an RSVP working group (Cisco System Inc. 1999). At present, 

many vendors of operating systems and routers are incorporating RSVP and integrated 

services into their products for near-future availability. The potential for the use of 

RSVP is enormous, and it is growing as more and more interactive multimedia 

applications are presented for use over the Internet or organizational intranet (Stallings 

1997). 

2.4 RT-MACH at Carnegie Melon University 

2.4.1. Introduction to RT_Mach 
RT_MACH is a real-time operating system developed at Carnegie Mellon 

University. It is an extension to the Mach operating system (Rajkumar et al. 1998). It 

was developed under the circumstance that the general time-sharing operating system 

cannot satisfy multimedia applications' (such as video and audio) timing requirements. It 

is a micro kernel based operating system which means only the most basic functions are 

put into the kernel, all the other functions are put outside the kernel as servers. 

RT_MACH supports multiple scheduling policies, such as rate monotonic scheduling and 

earliest deadline first scheduling. The resource reservation abstraction in RT_MACH is 

an implementation of a resource reservation scheme. 

2.4.2 Reservation abstraction in RT_MACH 
In reservation abstraction, the system considers each shared resources (physical or 

logical) such as CPU, memory and semaphore as a kind of resource (Rajkumar et al. 
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1998). When a real-time task requests a resource and the request is granted, a reservation 

of this resource is saved for this task. The system guarantees the availability of the 

resource when the task wants to use it. This kind of scheduling is called resource-centric 

scheduling (Chen, Rajkumar, and Mercer 1996). RT_MACH describes each task by five 

parameters: start time, end time, period, deadline and computation time (Chen, Rajkumar, 

and Mercer 1996). The timing requirement of each task is to use requested resource for 

computation time before deadline in each period. Each guaranteed task will get its 

reservation and not influence other tasks. 

2.5 Conclusion 
In this chapter, we analyzed the problem that needs to be solved in order to 

provide guaranteed service. We also analyzed a solution to this problem - the resource 

reservation scheme. Two implementations of resource reservation scheme (RSVP and 

RTJVLACH) have been given. 
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CHAPTERIII 

SYSTEM ARCHITECTURE 

In this chapter, the system architecture used in this project is given. We first give 

an overview of the system. Then a detailed analysis of each component will be given. 

3.1 Overview of the system 
Figure 3.1 shows an overview of system architecture. 

User Applications (User Mode) 

Real-Time 
Application 1 
 "#- 

Real-Time 
Application 2 

Real-Time 
Application N 

Turtle Scheduler Communication 
Subsystem 

Linux 

(Kernel Mode) 

Myrinet 

Figure 3.1 System Architecture 

3.2 Software Architecture 

3.2.1 RT_Linux 
RTLinux is chosen as the operating system.   Linux is an increasingly popular 

free Unix-clone operating system (Atlas et al. 1998). Because it is free and all the source 

code is available, some research has been done on Linux to make it into a real- 
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time operating system that can support hard real-time application. RT_Linux is 

developed under such background. It was implemented at New Mexico Tech. The basic 

idea is to change Linux into a real-time OS without changing the kernel too much 

(Barabanov and Yodaiken 1996). Standard Linux cannot support hard real-time 

applications because: 

• The Linux kernel is non-preemptive. When the user makes a system call 

and it goes into the kernel mode, Linux will lock the scheduling until the 

system call finished. At this time, a ready task with higher priority cannot 

preempt the lower priority task that is running the system call. This may 

cause unpredictable latency for a real time task. 

• In the critical section, Linux kernel always uses cli to disable interrupts to 

keep the consistency of critical resources. Like scheduling lock, this is 

also a problem for real-time tasks. What RTJLiriux does is to add a real- 

time kernel over Linux and make Linux as a real-time task with the 

lowest priority. Linux is not aware of the existence of a RT kernel. The 

following figure shows the structure of RT Linux. 

(User Mode) Linux Process 1 Linux Process n 

i k 

Linux Kernel RT Process 

(Kernel Mode) i k i k 

Software Interrupt 
Real Time Kernel Scheduling 

f Hardware Tnternint 

Figure 3.2 RT_Linux structure 
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From the Figure 3.2, we can see that all real time tasks and real time kernel are 

running in the kernel mode. Only the Linux processes are running in user mode. 

Another big change of RTLinux comparing to Linux is that all the sti and cli 

instructions in the kernel are replaced by soft sti and cli. What the soft sti and cli do is 

not directly set or clear the status register in the CPU, instead they only set or clear the 

value of a soft flag. In the interrupt emulator, it will check this soft flag to see if it should 

pass current interrupt to Linux kernel or not. All the real-time interrupts are responded to 

immediately, thus avoiding unpredictable interrupt latency in Linux. There are also some 

drawbacks of RT_Linux. First, putting the real time task into the kernel is sometimes 

dangerous. There is no spatial protection between the kernel and the application. A logic 

error in the real time application may cause the whole system to crash. Second, the Linux 

kernel system primitives are not reentrant in nature and RTLinux does not change this 

point. To keep system consistencies the real time task cannot use any system services 

provide by Linux kernel. Third, two scheduling policies are implemented in current 

RTLinux. One is a fixed priority based preemptive scheduler, another is earliest 

deadline first (EDF) scheduler. Both of these do not provide temporal protection among 

real time tasks. A time-misbehaving real-time task can easily influence the run time 

behavior of other normal real time tasks. The last one is not a problem for RTLinux. 

Because the user can implement his or her own schedulers and add it to the kernel easily. 

The Turtle scheduler is such a scheduler implemented on RT_Linux (Apte et al. 1999). 

3.2.2 Turtle scheduler 
Turtle scheduler is a real-time scheduler on RTLinux developed in the HPC 

group of Mississippi State University.     It adopted the reservation abstraction in 
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scheduling policy. The scheduling algorithm it uses is critical deadline (deadline- 

computation) first algorithm (Apte et al. 1999). It is similar to Earliest Deadline First 

algorithm. Each periodic hard real time task is represented by five parameters: Q, Pit Dt 

, Si, Ei. They represent computation time, period, deadline, start time and end time of a 

periodic hard real time task respectively. The scheduler always chooses the task with the 

earliest critical start time to run. The deadline driven scheduling algorithm is optimum in 

the sense that if a set of tasks can be scheduled by any algorithm, it can be scheduled by 

the deadline driven scheduling algorithm (Liu and Layland 1973). The scheduler only 

guarantees the requested time of a real time task. The scheduler keeps track of the run 

time of a real time task. When a real time task overruns its requested time and another 

real time task is ready to run, the scheduler will get the overrun task out of the CPU and 

let the other ready real time tasks run. In the real-time field, this is called a reservation 

abstraction. Just as the virtual memory mechanism will provide spatial protection among 

processes, the reservation abstraction can provide temporal protection among real time 

applications, which means a runtime misbehaving task will never influence other normal 

real-time tasks runtime behavior. 

3.2.3 Communication layer 
The task of the communication layer is to cooperate with the real-time scheduler 

in order to provide guaranteed service to communication tasks. The objective of this 

project is to provide such ä communication layer in order to achieve real-time 

communication. A detailed analysis of the communication layer will be given in the next 

chapter. 

158 



3.3 Hardware architecture 
A two-node Myrinet cluster is used in the experiments. Both of hosts are Pentium 

Pro 200. Myrinet is used as network test bed. A detailed introduction to Myrinet is given 

below. 

3.3.1 Myrinet 
Myrinet is a high performance gigabit per second network.   It can provide full 

duplex data transmission rate at 1.28 Gigabit/second (Boden et al. 1997). It uses cut- 

through switch to provide low latency data transmission. Myrinet is also really reliable. 

It exhibits a very low bit-error rate, less than one bit error per day in a large network, and 

is highly robust with respect to host, switch, and cable faults (Myricom Inc. 1999). A 

Myrinet network is composed of three parts: Myrinet network interface cards, cables and 

switches. 

A Myrinet interface card is a programmable card. It has an embedded processor 

(LANai) on it. The control program running on this embedded processor is to handle 

direct interaction with host and network and is called the MCP (Myrinet Control 

Program). The user can implement his or her own communication layer over Myrinet by 

writing a customized Myrinet Control Program. There are three DMA engines on the 

LANai (Myricom Inc. 2000). The first one is responsible for the data transmission 

between host and LANai. The second one is responsible for data transmission from 

LANai to network. The third is responsible for data transmission from network to 

LANai. The diagram of a Myrinet network interface card is shown in Figure 3.3. 
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CHAPTER IV 

GM ANALYSIS 

Instead of building a whole new communication layer, GM (Glenn's Messaging) 

was chosen as the basis for this project. GM is composed of an MCP, a host library and a 

device driver. In this chapter, a detailed analysis of GM will be given. 

4.1 Introduction to GM 
GM is an open source, high performance message layer over Myrinet.   GM's 

design objectives included low computational overhead, portability, low latency, and 

high bandwidth (Myricom Inc. 2000). It is provided by the vendor of Myrinet, Myricom 

Inc. There are several features in GM that make us choose it as our basis. 

• Open source (So we can modify) 

• Low latency 

• Automatically maps network. 

The GM system includes a driver, Myrinet interface firmware, a network mapping 

program and the GM API, library, and header files. By choosing GM as the basis for this 

project, it is possible to utilize a lot of features provided by GM, like network mapping 

etc. In this way, we can get a real-time communication layer with minimum extra 

development effort. 
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4.2 GM analysis 
The problem we are facing is that GM is a high performance message layer, not a 

real-time one. By analyzing the memory management and link scheduling in GM, we 

found out the memory management and link scheduling between real-time traffic and 

non-real-time traffic must be separated. The following graph shows the data flow in GM. 
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Buffer 

SDMA 
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LANai buffer 

Step 2: DMA 
message from 
LANai buffer to 
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network to 
LANai buffer 

I lost 
Buffer 

Figure 4.1 Data flow in GM 

From this diagram, one can see that the data transmission in GM is finished via 

four DMA transfers. On the sender side, the sender needs to DMA data from host buffer 

to LANai buffer first.  Then the MCP on sender side will DMA these data from LANai 
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buffer to network. On the receiver side, the MCP will DMA data from network to LANai 

buffer, then finally, DMA these data from the LANai buffer to host buffer. 

4.2.1 GM memory management 
As the graph shows, for data transfer between host and LANai, GM currently only 

supports DMA transfer. Before sending out or receiving any data, GM process must get 

the memory both in the host and on the LANai. 

Host side memory management 

Before sending and receiving data from the LANai, GM process must get a 

DMAable (contiguous and non-pageable) memory from kernel. Gmdmamalloc is used 

for this purpose. What it does is to use kmallocO for kernel port and use malloc() for 

user port to get DMAable memory. This is not appropriate for real-time use, since it will 

cause unpredictable waiting time when there is not enough memory available. 

LANai buffer management 

The MCP in GM only has two send buffers and two receiver buffers (Myricom 

Inc. 2000). When there is a send arriving from host or a receiver arriving from network, 

and there is no available buffer, the MCP will put the send and receive into a waiting 

queue, until the buffer becomes available. As with the memory management on host side, 

this will also cause unpredictable waiting time, and thus is not appropriate for real-time 

purposes. 

4.2.2 Link scheduling in GM 
The GM communication system provides reliable, ordered delivery between 

communication endpoints called "ports," with two levels of priority (Myricom Inc. 2000). 

Before sending or receiving data from the Myrinet network, the user must open a port 
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using gm_open(); Port number, destination node number and priority uniquely identify a 

sub-port. The send queue in GM is a circular list of connections with pending sends. 

Each connection maintains a list of sub-ports that have sends pending over that 

connection. Each sub-port maintains ä list of send tokens describing packets that have 

data to be sent, or have acknowledgements pending. For fairness, in GM after each send, 

the control program rotates the sub-port queue for the connection, and then rotates the 

connection queue (Myricom Inc. 2000). This is a kind of time-sharing scheduling policy. 

It is not QoS sensitive, thus not appropriate for real-time purpose. 

4.2.3 Flow control and error control in GM 
GM uses the "go back N" protocol with NACKs in flow control and error control 

(Myricom Inc. 2000). "Go back N" is the preferred protocol when software overhead, 

rather than network capacity, is the network's limiting factor, because it wastes network 

bandwidth during error recovery to reduce software overhead relative to other protocols 

(Tanenbaum 1996). This is unnecessary for real-time traffic, since retransmission in real- 

time traffic is most often riot desired. This is also the reason why hard real-time traffic 

always requires high reliability from underlying network. 
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CHAPTER V 

IMPLEMENTATION 

After analyzing GM, the conclusion was reached that the memory management 

and link scheduling of real-time traffic and non real-time traffic must be separated. In 

this chapter, implementation details of real-time traffic memory management and link 

scheduling are given. 

5.1 Memory management of real-time traffic 

5.1.1 Host side memory 
The solution is to build a RT module over the GM device driver.  When this RT 

module is loaded, it will pre-allocate a certain amount of memory from the kernel. Real- 

time tasks will get and release memory by making requests to this RT module. After 

obtaining memory from kernel, this RT module will organize this piece of memory into a 

circular buffer. 

5.1.2 The Lanai side memory 
We use shadow buffers on LANai.  Once a communication task gets a buffer in 

host or in LANai, it also gets the corresponding buffer in LANai or host. DMA transfers 

data between corresponding buffers in LANai and host. 
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5.1.3 Implementation detail 
On the host side, there are two options to pre-allocate buffer from kernel. One is 

to use kmalloc (size, GFPDMA) to get non-pageable, contiguous memory from kernel. 

Another is to use memory map function provided by Linux kernel to map high address 

memory into kernel address space. In this case, we choose the later option. This is based 

on the concern that: memory obtained by using kmalloc (size, GFP_DMA) belongs to the 

low 16MB memory. Memory in this range is very precious. If too much DMAable 

memory is allocated, other kmallocs in the system may fail. By using vremap(), we can 

overcome this drawback. 

On the LANai side, send and receive buffers are allocated by static array. A static 

array of size RT_MAXFRAME*(RT_MAXSEND+RT_MAXRECV) is added into the 

GM data structure. 

5.2 Link scheduling of real-time traffic 
For link scheduling between real-time traffic and non real-time traffic, priority- 

based scheduling is used. The new system diagram is shown in Figure 5.1. Real-time 

events always have higher priority over non-real-time events. In this way, we can 

guarantee that real-time traffic will always be scheduled ahead of non-real-time traffic. 

For link scheduling between real-time traffic, First-In-First-Out (FIFO) scheduling is 

used. This is based on the assumption that the arriving order of real-time packets is 

already scheduled by the scheduler on the host side. 
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Figure 5.1 Diagram of new system 

In GM, the system status is expressed by ISR&IMR|GM_STATE (Myricom Inc. 

2000). The hardware information, such as whether the send interface is ready or not, is 

expressed by the hardware register ISR. It is maintained by the LANai hardware. IMR is 

the interrupt mask register. Other information, such as whether there is a packet pending 

to be sent, is expressed by a 32 bit global variable GMSTATE that is set and cleared by 

software (Myricom Inc. 2000). The dispatch of GM can be finished within two 

instructions. Two tables are set to achieve this goal. The first one is called the event 

index table.   It is responsible for converting current status (ISR&IMR|GM_STATE) to 
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the corresponding event index. The second table is called the handler table. It is 

responsible for converting the event index to the corresponding handler address. The 

dispatch procedure is expressed by Figure 5.2. 
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Figure 5.2 Dispatch tables in GM 

In order to add real-time ability to GM, another 8 events are added into system. 

They are as follows: START_RT_SEND_EVENT, FINISH_RT_SEND_EVENT, 

START_RT_SDMA_EVENT,FINISH_RT_SDMA_EVENT,START_RT_REGV_EVE 

NT,FINISH_RT_REGV_EVENT,START_RT1RDMA_EVENT,FINISH_RT_RDMA_E 

VENT. Correspondingly, another 8 status bits are added into system. They are as 

follows: RT_SDMAING, RT_SDMA_PENDING, RT_SENDING, 

RT_SEND_PENDING,  RT_RDMAING,   RT_RDMA_PENDING,   RT_RECEIVING, 

RTRECVPENDING.   In the original GM system, only 15 bits are used to express 
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currently system status. The size of event index table is 32K byte. Each time we add a 

status bit, the event index table will double in size. Since 8 status bits are added, the size 

of event index table will be 8 MB. This is not realistic for an embedded processor since 

the memory of an embedded system is always precious. In our case, the maximum 

SRAM for a LANai processor is 4MB. Because of the limitation of memory, for real- 

time events, we use if statement instead of table dispatching. Performance is sacrificed 

for memory usage. 
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CHAPTER VI 

TEST RESULTS AND RESULTS ANALYSIS 

6.1 Predictability Tests 

6.1.1 Test Metric 
In order to test the predictability of the system, latency variance (jitter) is used as 

the test metric.   It is an important metric to measure the performance of a real-time 

system. 

6.1.2 Test method 
A 32-bit timer on LANai board is used to get timestamps. The resolution of this 

RTC (Real-Time Clock) is 0.5 JJS . 

Figure 6.1 shows the complete test procedure. 
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Figure 6.1 Test Diagram 
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Round trip latency is tested because of two concerns. The first one is that 

currently there is no global clock synchronization support in the MCP^ The second one is 

that if one uses global clock synchronization, the accuracy of test results will heavily 

depend on the accuracy of global clock synchronization. 

The test plan is as follows. There are four real-time tasks running on two nodes. 

The send task on node A will send a message to host B. When the receive task on host B 

receives this message, it will pass the message to a send task on host B. Then the send 

task on host B will send this message all the way back to host A. During this procedure, 

one gets eight timestamps. By computing these timestamps using the following formula, 

we can get the round trip latency. 

Round-Trip Latency=(time8-timel)-(time3-time2)-(time5-time4)-(time7-time6) 

Table 6.1 Detail description of timestamps 

Time Description 

Time 1 The time when send task on node A send out the message 

Time 2 The time when LANai on node B gets the message 

Time 3 The time when receive task on node B gets the message 

Time 4 The time when receive task on node B send this message to send task on node B 

Time 5 The time when send task on node B starts to send back the message 

Time 6 The time when LANai on node A gets the sending back message 

Time 7 The time when receive task on node A gets the sending back message 

Time 8 The time when receive task on node A finish computation 
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6.1.3 Tests to be conducted 
Test 1: There is no real-time traffic in the system. Latency jitter of the "original" GM 

traffic is tested. By increasing the number of communication tasks, the impact of shared 

resource contention on latency variance can be observed. 

Test 2: There is only real-time traffic in the system. Latency jitter of real-time traffic is 

tested. 

Test 3: Both real-time traffic and non real-time traffic is in the system. Latency jitter of 

real-time traffic is tested to see the impact of non real-time traffic on real-time traffic. 

6.1.4 Expected results 
The results of test 1 (jitter of non-real-time traffic) should be high, since there is 

no mechanism used to guarantee the predictability of message transfer. 

The results of test 2 (jitter of RT traffic) should be small. It should be much better 

compared to the jitter of non-real-time traffic. 

The results of test 3 (jitter of RT traffic with the presence of non-real-time traffic) 

should be close to the results of test 2, since ideally real-time traffic should not be 

influenced by non-real-time traffic. 
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6.2 Test results 

6.2.1 Test 1 
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Figure 6.2 Round Trip Latency of Single non-RT traffic 

Round Trip Latency of Multiple non-RT-traffic 

Figure 6.3 Round Trip Latency of Multiple non-RT traffic 
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6.2.2 Test 2 

Round Trip Latency <Period3=-10s) 

.S 

8 
3 
•8- 

150O 
14SO 
1400 
1350 
1300 
12SO 
12DO 
11SO 
1100 
10S0 
10OO 
950 
90O 
BSO 
800 
7SO 
70O 
650 
BOO 
5SO 
500 
450 
400 
350 
30O 
250 
200 
150 
lOO 
50 
O 

'gnurtresult'      - 

- - 
:                                                                                                       - 

■111 inn IIMIIll! lllillll 111 liiiiiiii 1111 llllllllllllllllll linn lliiililll llil'ilil : 

1 i IF 1 ■ 11| , I ] (L111| II   ~ 
Mv\ , 1 1 Kill 1    !' - 
ml 'i' 1 1 II PI i ||| j 1 \ i I  HtjjSj) IE ill 
nil II 11 it 111! HI l||||| Illl - 
Hill fl PI III II 1 11 i|| 11 
rfll 1 1 all 

i 
lilfi IB 11 [i : 

JJ 11 1 Itll l| Illl w ■ II 
0 HI (it - 
|||] 111 Illl Kill 111 ■?i:: 

11 

Hill 111 11 111 ill 11 1   l'1: lllillll = 
ISO 

Periods 

Figure 6.4 Round Trip Latency of RT traffic with no non-RT traffic 

6.2.3 Test 3 
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Figure 6.5 Round Trip Latency of RT traffic with single non-RT traffic 
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Figure 6.6 Latency jitter of real-time traffic with six non-RT traffic 

Table 6.2 Average round-trip latency and jitter of tests 

Average Round-Trip Latency 
(Microsecond) 

Jitter 
(Microsecond) 

Single non-RT traffic 974.65 108.53 

Six non-RT traffic 16488.472865423 2147410.962 

RT traffic 926 17 

RT traffic with single 
non-RT traffic 

1312 322 

RT traffic with six non- 
RT traffic 

1345 296 

6.3 Results Analysis 

Figure 6.2 shows the round trip latency for single non-real-time traffic. From this 

figure, one can see that there is a long round trip latency appearing irregularly.   The 
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biggest jitter observed so far is around 90 microseconds. This also matches the expected 

result. Since there is no mechanism used in the original GM to provide guaranteed 

services, latency jitter is expected to be high. Figure 6.3 shows the round trip latency for 

six non-real-time traffic. From this figure, we can see the impact of contention over 

shared resources on round trip latency. In this experiment, six GM communication peers 

are set up on two nodes. Figure 6.3 is the round trip latency of one peer. The biggest 

jitter in this case is more than 2 seconds. By comparing Figure 6.3 with Figure 6.2, we 

can draw the conclusion that the round trip latency of non-real-time traffic will increase 

when the workload in network increases. Figure 6.4 shows the round trip latency of 

single real-time traffic. The biggest jitter observed so far is only around 20 

microseconds. This also matches the expected results very well. The mechanisms used 

in the system for real-time traffic do have an effect. Figure 6.5 shows the round trip 

latency of single real-time traffic with the presence of one non-real-time communication 

peer. From this figure, we can see that both the round trip latency and latency jitter 

increase in the presence of non-real-time peers. There are two reasons for this increase. 

The first one is that transactions on each state machine are non-preemptive. Dispatch 

occurs only after transactions. The second is that DMA operations on LANai are non- 

preemptive. One cannot initiate a DMA operation until the current DMA operation 

finishes. These two reasons explain why both round trip latency and latency jitter 

increase when there is non-real-time traffic in the system. Figure 6.6 shows the round 

trip latency of real-time traffic with the existence of six non-real-time communication 

peers. By comparing Figure 6.5 and 6.6, one can see that both round trip latency and 

latency jitter stay stable.   They will not increase when the number of non-real-time 
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communication peer increases. Average round-trip latency increases. Since the 

possibility that a RT traffic waits for an on-going non-RT traffic increases, average 

round-trip latency will increase. Since the increase of worst case round-trip latency is 

due to the granularity of preemption, the worst case round-trip latency when there are 

multiple non-RT traffic should be the same as the worst case round-trip latency when 

there is only one non-RT traffic in the system. This explains why jitter stays stable in 

Figure 6.5 and Figure 6.6. Actual results match expected results. Table 6.2 shows the 

average round trip latency and jitter of these tests. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

The objective of this project is providing a real-time communication layer to 

cooperate with the existing scheduler to achieve real-time communication. In order to 

minimize the development efforts and utilize the existing communication layer's features, 

GM was chosen as the basis of this project. The problem needing to be solved in this 

project was how to provide real-time communication while still keeping the functionality 

of original GM. Current research in this area is studied in chapter two. The goal is 

achieved by separating memory management and link scheduling of real-time traffic and 

non-real-time traffic in this project. System architecture, system analysis and 

implementation details are given in chapter three, four and five respectively. Tests were 

also conducted to verify the functional correctness and real-time performance of the 

system. The complete results of tests conducted are presented arid analyzed in Chapter 

six. The actual results match well with the expected results. 

From the results of tests we have conducted, the following conclusions can be 

reached: 

•    We successfully integrated real-time traffic and non real-time traffic. The system 

functions correctly. Both real-time communication and non-real-time 

communication can run in the system simultaneously. 
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• System can cooperate with the existing scheduler (Turtle) to provide guaranteed 

service for real-time applications. 

Although the goal of this project was achieved, the resulting system is not a 

complete system yet. Following is the work need to be done in the future. 

• The current MCP does not support global clock synchronization. In order to 

support time-based scheduling, global clock synchronization support should be 

added in the future system. 

• The final system should include admission control. This is a very important part 

in resource reservation scheme. 
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1 Summary 

The objective for our work in this contract was to enhance the Maruti operating 
system in several ways, in order to provide Mississippi State University with a 
platform upon which their work on the Real-Time Message Passing Interface 
could be developed. Maruti is a hard real-time operating system that has been 
in development at the University of Maryland for the past few years. For this 
particular contract, our goals were to enhance Maruti in two major and one 
minor areas. The two major areas are the high accuracy in the dispatching 
of real-time tasks and the dynamic time-based scheduling scheme. The minor 
area is in the development of a graphical tool to aid in the configuration and 
integration of hard real-time applications. 

2 Real-Time Dispatching 

In this area of research, our goals were to find ways to dispatch real-time tasks 
as close to their scheduled dispatch time as possible. This problem is difficult 
due to the relative unpredictability of various aspects in a computing system 
such as pipelining, cache hit/miss, etc. More specifically, we look at the accu- 
racy of two approaches to dispatch real-time tasks. We start by studying the 
traditional approach of using count-down timers and discuss the factors affect- 
ing its precision. Next, we study a new approach for the deployment of the 
count-down timers that promises a higher degree of dispatching precision for 
real-time tasks. 

The typical approach for the deployment of count-down timers is to preset 
the timer with a specific value representing the number of clock ticks required 
to elapse before a timer interrupt is generated. Till that time, the CPU can 
be used to run non real-time tasks. On the arrival of the timer interrupt, the 
CPU launches an Interrupt Service Routine (ISR) which handles the context 
switching from the current task to the real-time task. 

In our implementation, we make use of the count-down timer present in 
the Advanced Programmable Interrupt Controller (APIC) which is part of the 
Intel© P6 Architecture. The P6 architecture is implemented in all Pentium 
Pro© and newer Intel microprocessors. In these systems, the system bus typi- 
cally runs at a clock cycle of 66.667 MHz. The CPU multiplies the bus clock to 
synthesis its internal CPU clock. 

The APIC timer has a 32-bit register that is decremented at each bus clock 
tick. For example, the counter is decremented every 15 nanoseconds when driven 
by a 66-MHz bus clock. The timer can be programmed to operate in one of two 
modes; "periodic", or "one-shot". In the periodic mode, the timer generates an 
indefinite number of interrupts periodically as determined by the initial value 
written in its register. Whereas in the one-shot mode, the timer generates only 
one interrupt. 
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Due to the limited width of the countdown register, the frequency of the 
bus clock, as well as other implementation-specific considerations, the longest 
period to program the timer may be limited to a maximum of M seconds. A 
typical value of Mis 1.431 seconds for a 300 MHz Pentium II driven by a 66 MHz 
bus clock. If a longer period, say T, is needed, the timer may be programmed 
in periodic mode for [-j^J iterations of length M seconds each, followed by a 
one-shot iteration of length (T modulo M) seconds. 

Our analysis of the single interrupt approach has suggested that it is pos- 
sible to reduce the amount of variability in the dispatching time through the 
absorption of the cache-miss effect. Pre-loading the CPU's level-1 cache with the 
required data and instructions has shown to significantly reduce the variability 
in the dispatching time. The technique that we use applies a double-interrupt 
approach to pre-load the data and instructions of that portion of the interrupt 
service routine responsible for the final dispatching procedures. 

As with the single interrupt approach discussed above, the APIC timer may 
be programmed to generate few periodic interrupts, denoted by APICn, ■■•, 
APICi- A semi-final interrupt, denoted by APICi, is generated at tr — T to 
pre-load the level-1 cache with the data and instructions required for the final 
dispatching steps. Fundamentally, APICi touches all the memory paragraphs 
containing data and instructions used at the final dispatching steps. In addition, 
APICi prepares the timer to generate a final interrupt at time tr — 8 and 
immediately switches the context into a dummy idle task, called "APIC idle". 
The idle task is carefully engineered to preserve the contents of the level-1 cache, 
thereby eliminating the side-effects of the non real-time task that are evident 
in the single interrupt approach. The final interrupt, APICQ, performs the 
context switching back into the kernel, which in turn dispatches the real-time 
task. The values of r and 8 are empirically determined to accommodate the 
context-switching transitions 2, 3 and 4 and still minimize the average value of 
errTask 

Appendix A contains excerpts from a paper providing a more detailed de- 
scription of the research and results from the work described in this section. 

3    Parametric Scheduling 
A new design for the Maruti scheduling scheme has been developed to enhance 
the system task schedulability, and broaden the range of task types that can be 
scheduled by the system in a timely manner. The following is a description of 
the modules of the scheduling model, their scheme of execution, and information 
passing: 

Off-line scheduler The off-line module accepts an ordered set of tasks along 
with their timing requirements such as ready time, deadline, period jitters, 
and relative timing constraints among the different tasks. It uses this 
information to generate a dynamic calendar. 
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Dynamic calendar The dynamic calendar contains information about the 
task instances and their timing dependencies in the form of functions 
whose parameters are values generated at run-time, such as internal sys- 
tem states, external system physical state, or previous task instances ac- 
tual execution times. The parametric functions produce the minimum 
and maximum starting times for the different task instances as their out- 
put. The calendar also include a pointer to the first task instance to be 
executed. 

On-line Dispatcher This module executes as part of the operating system 
kernel. It is initiated after an invocation request for the application is 
made. It starts by loading the dynamic calendar generated by the off-line 
module and uses the pointer in the dynamic calendar to dispatch the first 
task for execution. The on-line module remains active at run-time, filling 
in the values of the functions' parameters by values generated at run-time. 
It uses the times generated by these function to start the execution of the 
task instances according to their original timing constraints. The execu- 
tion times of the different tasks are used as parameters for the functions of 
the parametric functions as well as a feedback for the off-line component, 
to be used as estimates for tasks execution times. 

Using the new dynamic time-based scheduling scheme, we can schedule both 
periodic and aperiodic tasks. Tasks can execute in any general pattern other 
than strict periodic, for instance the system can schedule periodic tasks with 
variable inter-instance periods. 

The dynamic time-based scheduling model can also support linear relative 
timing constraints that frequently rise in real-time applications. Linear relative 
timing constraints generally take the from ex - e2 < t, where ex, e2 are timing 
events such as the start or finish of a task execution, and t it a time period. 

The benefits of the scheduling scheme are: 

• Ability to add aperiodic tasks at run-time. 

• Ability to schedule more general tasks. 

• Variation of the run-time behavior depending on values generated by exe- 
cuting tasks, or system state to change the parametric functions calculated 
by the off-line component at pre-runtime. 

• Using parametric function makes use of the slack time to run non-real-time 
tasks, or to finish the schedule as early as feasible. 

The proposed scheduling scheme also gives some possibilities of fault tol- 
erance by allowing the operating system kernel to gain control, or update the 
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different functions parameters in case of failure.   Some of the fault tolerance 
abilities that are supported by this scheme are: 

• 

• 

Substitution of minimum values for parameters in case of failure of task 
instances generating the parameter value to keep the feasible total sched- 
ule. 

Using the maximum execution time for the task instances to generate a 
time interrupt, should the task instance execute more than the max time 
allowed for it. 

Appendix B contains excerpts from a paper providing a more detailed de- 
scription of the research and results from the work described in this section. 

4    MAGIC Tool 

The MAGIC (Maruti Application Graphical Integration and Configuration) 
graphical development environment pulls together various aspects of system de- 
velopment, including compilation, configuration, scheduling, and analysis, and 
debugging in an integrated GUI framework. 

MAGIC is designed to support various phases of the application develop- 
ment process. It accepts descriptions of tasks, which may be program modules. 
These modules are used as building blocks for the application. Magic supports 
a graphical manipulation of these tasks to establish their functional, timing and 
communication relationships. A framework for analyzing the resource usage is 
created which is used by the scheduler to generate the calendars for the applica- 
tion. The run time executable is created from the object code and the calendar. 
This executable can be run within MAGIC for debugging, including the anal- 
ysis of temporal properties through temporal debugging. Once debugged, the 
executable generated by MAGIC can be used in the production Maruti-based 
designs. MAGIC has analysis tools during all phases of the development. 

Following is a list of features for MAGIC: 

• Graphical view of the application structure. Each component type 
and its role in the application are immediately evident in a graphical 
display of the topology. Figure   1 shows an example of such display. 

• Graphical view of the resources of the system. Information about 
system resources available for use by the application can be graphically 
displayed in MAGIC, and back-end tools may be used to ascertain schedu- 
lability of the application. 

• Hierarchical grouping of components. As a graphical representation 
of a large application may become very complex and unwieldy, MAGIC 
supports hierarchical grouping of components into blocks, and information 
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Figure 1: Screen Display of MAGIC 

hiding in the display. For example, we may show only the interactions of 
a block with the outside world and not the structure of the block itself. 
Display filters facilitate viewing a selected part of the topology. 

• Multiple back-end analysis tools. MAGIC supports incorporation of 
various analysis tools working from the common representation of the ap- 
plication structure and providing results which are available in the graph- 
ical format. Temporal analysis techniques will be added to the current 
repertoire of MAGIC. 

We have finished a prototype implementation of MAGIC, which currently 
supports: the creation of tasks, threads, and jobs, the hooking up of commu- 
nication channels, the transparent replication of tasks for fault-tolerance, and 
generation of Maruti executable. Continuing and ongoing works will incorpo- 
rate the remaining features listed above into the common graphical framework 
of MAGIC. 
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A    Dispatching Real-Time Tasks: A High-Precision 
Approach 

In this chapter, we study the accuracy of two approaches to dispatch real-time 
tasks. We start by presenting the traditional approach of using count-down 
timers and discuss the factors affecting its precision. Next, we introduce a new 
approach for the deployment of the count-down timers that promises a higher 
degree of dispatching precision. For both approaches, we also accommodate the 
scheduling of non real-time tasks utilizing the CPU slack time. 

A.l    The Single-Interrupt Approach 

The typical approach for the deployment of count-down timers is to preset the 
timer with a specific value representing the number of clock ticks required to 
elapse before a timer interrupt is generated. Till that time, the CPU can be 
used to run non real-time tasks. On the arrival of the timer interrupt, the 
CPU launches an Interrupt Service Routine (ISR) which handles the context 
switching from the current task to the real-time task. 

In our implementation, we make use of the count-down timer present in 
the Advanced Programmable Interrupt Controller (APIC) which is part of the 
Intel© P6 Architecture. The P6 architecture is implemented in all Pentium 
Pro© and newer Intel microprocessors. In these systems, the system bus typi- 
cally runs at a clock cycle of 66.667 MHz1. The CPU multiplies the bus clock 
to synthesis its internal CPU clock. For example, to run the CPU at a 300-MHz 
clock, the bus clock is multiplied by a factor of 4.5 to generate the desired CPU 
clock frequency. 

The APIC timer has a 32-bit register that is decremented at each bus clock 
tick. For example, the counter is decremented every 15 nanoseconds when driven 
by a 66-MHz bus clock. The timer can be programmed to operate in one of two 
modes; "periodic", or "one-shot". In the periodic mode, the timer generates an 
indefinite number of interrupts periodically as determined by the initial value 
written in its register. Whereas in the one-shot mode, the timer generates only 
one interrupt. 

Due to the limited width of the countdown register, the frequency of the bus 
clock, as well as other implementation-specific considerations, the longest period 
to program the timer may be limited to a maximum of M seconds. A typical 
value of M2 is 1.431 seconds for a 300 MHz Pentium II driven by a 66 MHz 
bus clock. If a longer period, say T, is needed, the timer may be programmed 
in periodic mode for [-^j iterations of length M seconds each, followed by a 
one-shot iteration of length (T modulo M) seconds. 

'Faster bus clocks can now reach 100 MHz 
2Please, refer to equation 1 for details on the derivation of M. 
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Figure 2: Using a single APIC timer interrupt to dispatch real-time tasks 

This technique is further illustrated in figure 2. In this figure, which is not 
drawn to scale, we depict the time-line of the kernel, the non real-time and the 
real-time tasks. At time to the real-time kernel sets up the APIC timer and its 
ISR to dispatch a real-time task at time tr. The timer is first operated in periodic 
mode for several iterations denoted by APICn, ■ ■ ■, APIC\. Finally, a one-shot 
interrupt APICQ is generated at time tr - r. The value of r is empirically 
determined to accommodate the time needed to perform the context switching 
back to the kernel, and from there to the real-time task. The kernel typically 
performs some management steps before the real-time task is actually started. 
A lower bound on the interval tr — t0 is mandated by the amount of processing 
needed to set up the timer and perform the context switching transitions 1,2, 
and 3. 

A.2    Evaluation of the Single-Interrupt Approach 

The single-interrupt approach is implemented on a Pentium II300 MHz platform 
driven by a 66 MHz system bus clock with 64 MB of installed RAM. Evaluation 
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of this approach proceeds as follows: 

- The APIC timer is programmed so that a real-time task is to be started 
at time tr. 

- The CPU context is switched to some non real-time task. 

- The time instance tk at which the kernel is about to dispatch the real-time 
task is recorded . The dispatching error as seen by the kernel, denoted by 
errkemeU is defined to be tk - tr. 

- The time instance ts at which the real-time task is about to execute its 
first instruction is recorded. The dispatching error as seen by the real-time 
task itself, denoted by errtask is defined to be ts - tT. 

The values of both err kernel and erriask are monitored as the requested target 
time tr is varied from few seconds down to few hundreds of nanoseconds. The 
non real-time task running in the background implements a recursive function 
that generates the Fibbonacci series and store the results in a global data array. 
This selection increases the probability that the non real-time task will almost 
flush the contents of the processor's level-1 caches, both data and instruction 
caches, before the real-time task is dispatched. The results of a 4167-reading 
experiment are depicted in figure 3. This figure shows both errkernei, which is 
the lower plot with the right-hand-side vertical axis, and errtask, which is the 
upper plot with the left-hand-side axis, versus the relative target time tr - to 
in units of CPU clock cycles3 It should be noted that when the experiment is 
repeated for the same set of tr values, the same results are indeed repeatable. 
An inspection of figure 3 reveals the following: 

• There is a lower bound on the value of tr - to mandated by the CPU time 
needed to execute the context switching transitions 1,2, and 3 that are 
shown in figure 2. On our test platform, this lower bound was imperically 
found to be 666 CPU cycles ( = 2.22 /^seconds ). 

• errkemei varies within a range of 39 CPU cycles. 

• errtask varies within a range of 65 CPU cycles. 

• The similarity between the two curves suggests that the variability in 
errtask is a direct consequence of the variability in errkemeU with the 
exception of very few instances. In fact, analysis of the difference errtask 
- err kernel shows that it behaves almost like a constant. This difference 
has a very small standard deviation equal to 0.6 CPU cycles. 

On a 300MHz system, 1 CPU clock cycle = j-r bus clock cycles = 3r nanoseconds 
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The increments in the values of both errjterne> and errtask are of the order 
of the main memory access cycle. This observation leads to the conclusion 
that the absence of data and/or instructions from the processor's level 1 
cache is the main reason behind the variations in the dispatching time of 
the real-time task. 
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Figure 3: Dispatching time accuracy using single APIC interrupt 

A.3    The Double-Interrupt Approach 

The analysis of the single interrupt approach provided in section A.2 suggests 
that it is possible to reduce the amount of variability in the dispatching time 
through the absorption of the cache-miss effect. Pre-loading the CPU's level-1 
cache with the required data and instructions has shown to significantly reduce 
the variability in the dispatching time. The technique that we use applies a 
double-interrupt approach to pre-load the data and instructions of that portion 
of the interrupt service routine responsible for the final dispatching procedures. 
Figure 4 illustrates this technique. 

As with the single interrupt approach discussed in section A.l, the APIC 
timer may be programmed to generate few periodic interrupts,  denoted by 
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Figure 4: Using two APIC interrupts to dispatch real-time tasks 

APICn, ■■■, APIC?- A semi-final interrupt, denoted by APICi, is generated 
at tr — T to pre-load the level-1 cache with the data and instructions required 
for the final dispatching steps. Fundamentally, APIC\ touches all the mem- 
ory paragraphs4 containing data and instructions used at the final dispatching 
steps. In addition, APIC\ prepares the timer to generate a final interrupt at 
time tr — 6 and immediately switches the context into a dummy idle task, called 
"APIC idle" in figure 4. The idle task is carefully engineered to preserve the 
contents of the level-1 cache, thereby eliminating the side-effects of the non real- 
time task that are evident in the single interrupt approach. The final interrupt, 
APICo, performs the context switching back into the kernel, which in turn dis- 
patches the real-time task. The values of r and 6 are empirically determined 
to accommodate the context-switching transitions 2, 3 and 4 and still minimize 
the average value of err^ask 

4 a memory paragraph is 32-byte long 
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A.4    Implementation of The Double-Interrupt Approach 

The implementation of the double-interrupt approach involves two main com- 
ponents; namely 

- a set-up routine to schedule an event at a specific time instance in the 
future, and 

- the interrupt service routine (ISR) responding to the interrupts generated 
by the APIC timer. 

The set-up routine is illustrated in figure 5. This routines receives three inputs: 

1. The target time at which the event is to be dispatched 

2. A pointer to the routine which implements the event 

3. A pointer to a list of parameters to be passed to this specific instance of 
the event 

The target time must not be sooner than a minimum threshold which is em- 
pirically determined to be 1200 CPU cycles. As it is mentioned in section A.l, 

the number of required periodic shots, if any, is r M 
Q . The value of M is 

mandated by the computational details of the implementation and is given by: 

232 

M     =     —       seconds (1) 
10   x   CPU frequency v ' 

The total number of APIC interrupts, denoted by "cntDwn", equals 2 + number 
of periodic shots. The remaining time to event dispatching after all periodic 
shots have occurred, denoted by "cycles", is given by (tr — t0) mod M. Again, 
the value of "cycles" has to be more than the same threshold imposed on (tr — 
t0). Finally, the value of "cntDwn" determines the programming mode of the 
APIC timer; either "one-shot" or "periodic" mode. In the periodic mode, the 
APIC timer is set up to generate multiple interrupts M seconds apart. 

Next, the interrupt service routine' (ISR) for the APIC timer is shown in 
figure 6. Each time an interrupt is received from the APIC timer, the "cntDwn" 
counter is decremented. As long as "cntDwn" is still greater than 2, the APIC 
timer continues to operate in periodic mode. The moment "cntDwn" becomes 
2, a one-shot interrupt is scheduled r ticks before the target time tr. When 
this interrupt is received, "cntDwn" becomes 1, and the last interrupt is now 
scheduled 6 ticks before the target time tr. At this moment, the context is 
switched to the APIC Idle thread. As the last interrupt arrives, indicated by 
"cntDwn" becoming zero, the context is switched to the kernel in preparation 
for dispatching the real-time event. 

193 



target time t r 

event tunction 

event parameters 

cntDwn = 2 + floor   ((tr-t0)   /   M ) 
cycles =  (t r -10) modulo   M 

cycles < 
threshold ? 

No 

0: If target is too soon 

1: If target is feasible 

Yes 
Target too soon 

return 0 

-Yes- 

cntDwn = cntDwn -1 
cycles = cycles +     M 

-No- 

set APIC timer: 
cycles - x, one shot 

cntDwn > 2 

-«> 

return 0 

-Yes- 

set APIC timer: 
M , periodic shots 

Figure 5: Setting up the APIC timer for double-interrupts 
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Figure 6: The interrupt service routine for the APIC timer 
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A.5    Evaluation of the Double-Interrupt Approach 

The performance of the double-interrupt approach is evaluated using an exper- 
iment identical to that used for the single-interrupt approach in section A.2, 
with the same non real-time task in the background. The observed values of 
errkemei and errta$k are plotted in figure 7. 
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Figure 7: Accuracy of dispatching time using double APIC interrupts 

An analysis of this figure reveals the following: 

• The lower bound on the value of tr - t0 is 1200 CPU cycles (=4/iSec). 

• errkemei varies within a range of 4 CPU cycles. 

• errtask varies within a range of 19 CPU cycles. 

The lower bounds for r and 5 are empirically found to be 1125 and 490 CPU 
cycles, respectively5. Further reduction in these values, especially in the value 
of r, resulted in erroneous kernel behavior. 

5On our test platform, these are equivalent to 5.06 and 1.63 /zseconds, respectively 
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A.6    Performance Comparison 

Measure 
Kernel Error Task Error 

Single .   Double % Single Double % 
Interrupt Interrupts Improve Interrupt Interrupts Improve 

Minimum -161 -130 19 -38 -7 82 
Maximum -122 -126 3 27 12 56 

Range 39 4 90 65 19 71 
Average -143.9 -128.3 11 -7.9 -2.6 67 
StdDev 4.5 1.0 77 4.6 2.5 46 

Table 1: Statistical comparison of err kernel and errtask 
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The task dispatching approaches presented in the previous sections provide 
two levels of temporal accuracy at two cost levels. Table 1 provides a side-by-side 
comparison of the single-interrupt and the double-interrupt approaches. The 
numbers indicate that the single interrupt dispatching mechanism results in a 
higher degree of uncertainty compared to the double-interrupt mechanism. The 
value of errkemei has demonstrated a 90%-reduction in its variability range and 
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a 77%-reduction in its standard deviation when the double-interrupt technique is 
applied instead of the single-interrupt technique. Similarly, the value of errtask 
has shown 71% and 46% improvements in both statistics, respectively. 

Figures 8 and 9 provide frequency histograms for err).ernei and errtas^, 
respectively. These figures further illustrate the contribution of the double- 
interrupt dispatching approach in reducing the variability in the dispatching 
time. 

On the other side, the increased accuracy has increased the overhead from 
666 CPU cycles (2.22 //seconds) to 1200 CPU cycles (4 //seconds). We believe 
that for accuracy demanding hard real-time tasks, this overhead is a reasonable 
price to pay for the increased temporal accuracy. 

A.7    Conclusion 

In this chapter a new high-precision technique for dispatching real-time tasks is 
developed. The technique is based on a double-interrupt approach and works to 
counteract the temporal variability resulting from the CPU's level-1 data and 
instruction caches. 
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B    Dynamic Time-Based Scheduling 

In real time systems, relative timing constraints may be imposed on task exe- 
cutions, in addition to the release time and deadline constraints. Periodic tasks 
might also have jitter constraints between the start or finish times of any two 
consecutive executions [12]. 

This paper addresses the problem of scheduling and dispatching real-time 
tasks with inter-task temporal dependencies. An ordered set of N jobs is as- 
sumed to be given within a scheduling window and this ordering is cyclically 
repeated at runtime. An off-line scheduler is presented to check the schedula- 
bility of the job set and to obtain parametric lower and upper bound functions 
for the start times for the jobs, if the job set order is schedulable. An On-line 
dispatcher algorithm is given to evaluate these bounding functions at run-time 
to obtain a valid time intervals during which jobs can be started. These bound- 
ing intervals are used to order ready jobs in a time-ordered list for time-based 
dispatching [3]. 

The run-time execution timing model can be varied according to values gen- 
erated by executing tasks, or system state to change the parametric functions 
calculated by the off-line scheduler at pre-runtime, and evaluated by the on-line 
dispatcher at run-time. 

B.l    Introduction 

Real-time systems are characterized by the presence of timing constraints on the 
computations carried out by the system. The timing constraints are statically 
determined at pre-runtime from the characteristics of physical systems they in- 
teract with. A special class of real-time systems, named hard real-time systems, 
require that the timing constraints be guaranteed prior to execution, since the 
result of a timing failure may lead to unstable or undesirable system behavior. 

Many real-time systems are constructed in the form of a cyclic executive 
model in which the application tasks are dispatched according to a predeter- 
mined periodic schedule named the calendar. The calendar lists the tasks and 
their start times, or valid intervals to start the tasks executions. At run-time, 
the dispatcher uses the calendar to dispatch tasks at their pre-determined start 
times. This approach is particularly suitable for periodic activities which often 
constitute the major part of the load in many real-time systems. 

While the problem of guaranteeing timing constraints in hard real-time sys- 
tems has received significant attention, few techniques have addressed the prob- 
lem of guaranteeing inter-task temporal dependencies such as relative timing 
constraints. Most real-time scheduling techniques consider the scheduling of 
real-time tasks with ready times and deadlines [4, 5, 16, 11, 14, 6, 8, 7]. These 
constraints impose constant intervals in which a task must be executed. In con- 
trast, in the presence of relative time constraints, the time window within which 
a task must execute may depend on the scheduling of the other tasks in the sys- 
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tern. Some scheduling systems consider scheduling the problem of scheduling 
aperiodic tasks with relative timing constraints   [9, 12]. 

In this section we briefly describe two scheduling schemes closely related to 
ours. The first one is the static cyclic scheduling scheme [2] and the second one 
is the parametric scheduling scheme   [10]. 

B.l.l    Static cyclic scheduling 

The static cyclic scheduling problem has been studied in [2]. The periodic task 
model is used, which means that every job has a release time and a deadline 
constraints, and only the jitter constraints between two job start times are 
allowed. An important assumption made in the work is that the start times 
of jobs in TJ are statically determined as offsets from the start of the j-th 
scheduling window [(j — 1)L, jL], and this schedule is invoked repeatedly by 
wrapping around the end point of the current schedule to the start point of the 
next. In other words, sj      = sj + L holds for all 1 < j. 

In the presence of jitter constraints, the job start times should be chosen 
carefully such that the jitter constraints are satisfied at run-time as well as the 
absolute constraints. Obtaining the ordering and job start times is an NP-hard 
problem, since non-preemptive scheduling problem with release time and dead- 
line constraints is NP-hard. Several priority based non-preemptive scheduling 
algorithms are presented and their performances are compared in   [2]. 

Suppose that a job rf belongs to P , and a job T/ belongs to T-7"1"1, and they 

have jitter constraints c\ < si — s? < C2 (0 < c\ < c? < L). From the above 

assumption, s^+ = L + s\ holds. Thus, a new constraint is created, c\ — L < 

«i — Sj < C2 — L, which is again equal to L — C2 < sf —st < L — c\. Therefore, 
the jitter constraints across the boundary of TJ and T3+1 are transformed into 
jitter constraints between two jobs in P. As a consequence, if we can find a 
static schedule for TJ that satisfy the above transformed constraints and the 
constraints between jobs within P, it is clear that all timing constraints will 
be satisfied if that schedule is repeatedly used at run-time. This approach is 
depicted in Figure   10. 

However, this approach suffers from the following limitations: 

• The relative constraints allowed are limited to jitter type constraints be- 
tween start times of two jobs. 

• The schedulability of job sets are reduced due to the static start time 
assignments. 

• It is very difficult to effectively incorporate dynamic tasks, such as aperi- 
odic tasks, into a schedule by dynamically adjusting the start times of the 
jobs. 
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relative constraint 

Figure 10: Static Cyclic Scheduling 

In some real-time applications, the jitter constraints may be imposed between 
the finish times of the jobs rather than between the start times [1]. Further- 
more, a periodic task may be decomposed into several subtasks and any kind 
of standard constraints may be defined between these subtasks [10]. In these 
cases this static scheduling approach is no more applicable without sacrificing 
the schedulability   [10]. 

By transforming the jitter constraints across the boundary of TJ and T-'+1 

into those between jobs within T\ we are affecting the schedulability of job sets. 
We will show that, under our new scheduling scheme in which this transforma- 
tion is not necessary, the schedulability of job sets is increased, i.e., some job 
sets are not schedulable according to this scheme whereas it is schedulable by 
our scheme. 

B.1.2     Parametric scheduling 

Gerber et al. [10] proposes a parametric scheduling scheme in the scope of 
transaction scheduling, in which any standard constraints may be given between 
jobs in one transaction. Let II =< TI,...,TJV > denote a sequence of jobs 
constituting one transaction with a set of standard constraints, C. Then, a 
schedulability of II is defined as follows: 

5c/ied = 3si ::Vei G [/i,ui] :: ... :: 3sN :: Vejv € [lN,uN] :: C (2) 

From this Sched predicate, parametric lower and upper bound functions for 
each start time s; are obtained by eliminating the variables in an order ejv, SJV , 
..., e;. The parametric lower and upper bound functions, denoted as T™n and 
F™al\ are parameterized in terms of the runtime variables, si, ei, ..., s,-_i, 
e,-_i of already executed jobs. The parametric calendar structure is shown in 
figure 11. 
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^rno < «1 < ?rx{) 
^Tn(«i-ei) < «2 < ^os(«i,ei) 

F™n(s1,e1,s2,e2,. ■,SN-l,eN-l) < SjV < JT^",(«i,ei)*2,e2,. ■,sjv-i,eAr-i) 

Figure 11: Parametric Calendar Structure 

This parametric calendar is obtained from an off-line component of the al- 
gorithm by applying variable elimination techniques that will be given later in 
this section, and the actual bounds of st are found at runtime by evaluating the 
parametric functions in the parametric calendar by using the start times and 
the finish times of already executed jobs, T\, ..., r,-_i. The actual form of these 
parametric functions are given in the following proposition. 

Proposition 1 (Parametric Bound Functions   [10] )  A parametric lower 
bound function for Sj is of the following form: 

^"(si,/i,...,*i-i,/,--i) 

=    max(pi +c1,p2 + C2,...,Pa+ca,a'pin) (3) 

where each pi, 1 < i < a, belongs to {si,/i,.. .,SJ_I,/J_I}, and C{ is an arbi- 
trary constant.6 And, a™ax is a non-negative integer. 

Similarly, a parametric upper bound function for Sj is of the following form: 

^]aX{s\, fl, ■ ■ ■ ,Sj-l, fj-l) 

-    mm(q1 + d1,q2 + d2,...,qb + db,af
ax) (4) 

where each qi, 1 < i < b, belongs to {si, fi,..., Sj-i, fj-i}, and d{ is an arbi- 
trary constant.. 

The main result obtained by the paper is that, for an arbitrary set of stan- 
dard constraints on II = {T\, ..., TM}, we can find the parametric calendar in 
0(N3) time and the run-time evaluation of each bound function can be carried 
out in O(N) time. 

By applying this parametric scheduling scheme, we are not only able to 
schedule any sequence of jobs with standard constraints, but also able to take 
advantage of the flexibility offered by the scheme. That is, the job start times 
may be decided dynamically at runtime to incorporate other dynamic activities 
in the system. Even though this scheme is directly applicable to our fe-fold 
cyclically constrained job sets, if the number of jobs in r1'* becomes large, the 
bounds need to be found on the size of parametric functions and for the memory 
requirements for them. The Process of variable elimination is discribed in  [12]. 

5Note that fi = s; + e;. 
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B.2    Maruti Programming Environment 

Building a Maruti application is a process that consists of a set phases, beginning 
with the coding of the Maruti programming language (MPL) which is used to 
develop individual program modules, and Maruti configuration language (MCL) 
which is used to specify how individual program modules are to be connected 
together to form an application and the details of the hardware platform on 
which the application is to be executed [15]. The life-cycle of an application in 
the Maruti environment can be divided into following phases Figure 12. 

Design 

Development Phase 

Compilation Integration 

Operational Phase 

Initialization Execution 

Figure 12: Maruti Application Life Phases 

B.2.1     Design Phase 

This stage is the starting point of the development of an application during 
which the overall design is carried out. The tasks layout and their timing re- 
quirements are specified [13]. 

B.2.2    Development Phase 

This phase is broken down into two stages, namely compilation, and integration. 

• Compilation. The source code modules created at this stage, along with 
their interface specifications. The resource requirements and the relative 
timing constraints for the modules are identified at this level, and are 
supplied to the integration environment. 
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• Integration. In this stage, modules created in the compilation stage are 
interconnected to form a complete program. The resource requirements 
for the application are identified and recorded with the application. The 
timing characteristics of the application is captured in the form of para- 
metric functions that are passed to the dispatcher to be evaluated at run 
time. 

The result of this phase is an executable application program, along with its 
resource and timing requirements [13]. 

B.2.3    Operation Phase 

In this phase resource allocation, dispatching, execution for the tasks occur. 
It is initiated after an invocation request is made. This phase consists of two 
stages, dispatcher initialization and task execution. 

• Dispatcher initialization. The Maruti on-line dispatcher loads the para- 
metric functions for the invoked application tasks, and constructs the dy- 
namic calendar that is used to dispatch the tasks in a timely manner. 

• Execution. During this stage the operating system kernel performs dis- 
patching, message passing, and reservation enforcement. Previous stages 
prepare the application for this stage, so that the timing requirements for 
the application are met, and the run-time overheads are minimal. The ac- 
tual running time for each task instance is recorded as a form of feedback 
for the off-line scheduler to be used in generating more accurate calendars. 

The resource requirements and timing information are identified and tracked as 
the application progresses through its life cycle, and are explicitly used during 
run time [13]. 

B.3    Model Description 

This section describe the different modules of the scheduling-execution model 
and their scheme of execution and information passing Figure 13. The dynamic 
time-based scheduler consists of the following modules 

B.3.1     Off-line scheduler 

The off-line module accepts an ordered set of tasks along with their timing 
requirements such as ready time, deadline, period jitters, and relative timing 
constraints among the different tasks. It uses this information to generate a 
dynamic calendar. 
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Static Task Set 

Internal System 

(e.g. Task Execution History) 

External System 

(e.g. Physical System State) 

Figure 13: Operation Model of the dynamic time-based scheduling system 

B.3.2     Dynamic calendar 

The dynamic calendar contains information about the task instances and their 
timing dependencies in the form of functions whose parameters are values gener- 
ated at run-time, such as internal system states, external system physical state, 
or previous task instances actual execution times. The parametric functions 
produce the minimum and maximum starting times for the different task in- 
stances as their output. The calendar also include a pointer to the first task 
instance to be executed. 

B.3.3     On-line Dispatcher 

This module executes as part of the operating system kernel. It is initiated 
after an invocation request for the application is made. It starts by loading the 
dynamic calendar generated by the off-line module and uses the pointer in the 
dynamic calendar to dispatch the first task for execution. The on-line module 
remains active at run-time, filling in the values of the functions' parameters 
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by values generated at run-time. It uses the times generated by these function 
to start the execution of the task instances according to their original timing 
constraints. The execution times of the different tasks are used as parameters 
for the functions of the parametric functions as well as a feedback for the off-line 
component, to be used as estimates for tasks execution times. 

B.4    Off-line Scheduler 

As in the parametric scheduling approach developed for transaction schedul- 
ing [10], we want to devise a schedulability test and an efficient dispatching 
mechanism when an co-fold cyclically constrained job set, r1,0°, is given with 
its constraint matrices and vectors. We say T1'*, is schedulable if there exists 
any method which can successfully dispatch the jobs in T1:k. 

Definition 1 (Schedulability of T1,k) The k-fold cyclically constrained job 
set T1,k (1 < k) is schedulable if the following predicate holds: 

sched1'k    =    3s{ :: VeJ € [l\,rt\] :: 3s\ :: Ve^ € [l\, u\] ::  ... 

38k
N::^ek

Ne[lkN,u
k

N]::C1'k (5) 

where Cl'k is a set of standard constraints defined on {s\,e\,... ,sN,eN}. 

Then, the following proposition holds for all k > 1. 

Proposition 2 

VJb > 1  :: sched1-"*1 =► schedl<k 

Proof: Obvious from the definition of a cyclically constrained job set and from 
the definition of schedl,k in (5). 

Hence, once schedl'k turns out to be False, then all sched1'1, k < j, are 
False, too. By this proposition, the schedulability of T1'00 is defined. 

Definition 2 (Schedulability of r1,0°) T1'00 is schedulable if and only if 

lim schedl'k = True 
k—t-oo 

In [10], it is shown that checking Predicate (2) is not trivial because of the 
nondeterministic job execution times and because of the existence of standard 
relative constraints among the jobs. This applies to the above schedl<k pred- 
icate, too. The variable elimination techniques are used in [10] to eliminate 
variables from Predicate (2). At the end of the variable elimination process 
parametric bound functions for Si, that are parameterized in terms of the vari- 
ables in {si, ei,..., e,_i}, are found as well as the predicate value. 

However, if we want to apply the variable elimination technique to sched1,k, 
the following problems have to be addressed first: 
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1. On which subset of {s\, e\,..., si-i>4-i} does tne parametric bound func- 
tions for sf depend? 

2. Is it required to store parametric bound functions for every job in r1'*? 

3. What parametric bound functions have to be used if k is not known at 
pre-runtime and dynamically decided at runtime? 

Let Tsi   '   and f™ax<   denote parametric lower and upper bound functions 

for s^, respectively, that are found after the variable elimination algorithms are 
applied to schedl>k. If the number of variables is unbounded with which p™in<k 

SJ 

or f™ax' is parameterized, then it is not possible to evaluate them at run- 

time within bounded computation times. Also, if it is required that parametric 
bound functions for every job in r1'* be stored at runtime, the scheme is not 
implementable for large k because of memory requirements. Finally, if the value 
of k is not known at pre-runtime and is decided dynamically at runtime, which 
is true in most real-time applications, the parametric bound functions to be 
used have to be selected. 

In this section, the answers to the above questions are sought by first trans- 
forming schedl'k into a constraint graph and by investigating the properties of 
such graphs. 

B.4.1     Transforming a constraint set into a constraint graph 

We want to apply the variable elimination algorithms to sched1'k for some fixed 
k, and want to find out answers to the previously raised three questions. For that 
purpose, we first transform the predicate into a constraint graph and apply node 
elimination algorithms(corresponding to the variable elimination algorithms) to 
the graph. Then, the properties of the constraint graphs created during the 
node elimination process are examined. Working on constraint graphs, instead 
of constraint sets themselves, makes it easier to infer and prove useful properties. 
In this section, the transformation rules are given for a set of jobs and its 
associated constraint set. 

Let II = {TI, r2,..., TN} be a finite set of jobs with a set of standard con- 
straints, C. Consider eliminating quantified variables from the following predi- 
cate: 

Sched = 3si ::  Vex 6 [/i,ui] :: .. 3sN :: Vejv € [/JV.UJV] :: C 

Then, predicates on subsets of {si,e1,.. .,sN,eN} are defined next that are 
found after eliminating variables. 

Definition 3 Sched(sa)(l < a < N) is defined to be a predicate on a set of 
variables {si, e\,..., sa) that are found after eliminating variables of< fN, sN,..., fa > 
from Sched. Sched(ea) is defined similarly. 
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That is, Sched(sa) can be expressed as 

Sched(sa)  = 3si :: Vei G [/i,ui] :: .. 3sa ::  C(sa) 

It will be shown that Sched(ov Sched(sa), or Sched(ea)) can be transformed 
into a directed graph, which is called a constraint graph, such that the variable 
elimination process can be mapped into a corresponding node elimination oper- 
ation in the graph. Note that, in the following definition of a constraint graph, 

semi-exclusive-ORed edges are defined. Also, v\ —► V2 denotes an edge from a 

node v\ to a node v^ with a weight w, and < vx —U- v2 —^+ ... -^+ u,- > denotes 

a path from a node v\ to a node v; with a weight sum w = X3i=i wi- ui ~* vi 

denotes that there exists a path from vi to Vi, and v\ ~» Vi denotes that there 
exists a path from v\ to i>2 whose weight sum is w. 

The following rule is used to transform a predicate into a constraint graph. 

Definition 4 (Constraint Graph) A constraint graph G(V, E) is found from 
Sched (or Sched(sa), or Sched(ea)) as follows: 

1. node set V is obtained as follows: 

• vQ G V 

• S{, fi (zV for 1 < i < N where fi = s,- + e{. 

2. edge set E is obtained as follows: 

• For each tuple < Si,f{  >,  add the following semi-exclusive-ORed 
edges to E: 

(a) Si —U fi 

(b) fi ^ Si 

• For each constraint in C that can be converted to: 

(a) Vi — Vj < c (v{,Vj G {si,fi | 1 < i < N}):      add Vj —► Vi to E. 

(b) Vi < c:      add VQ —* Vi to E. 

(c) —Vi < c:      add Vi —► VQ to E. 

Definition 5   The constraint graph found from Sched(sa) is denoted as G(sa).
7 

Similarly, G(fa) represents a graph found from Sched(ea). 

Figure 14 shows a graph created from an example job set T1,2. Note that 
VQ is an extra node created to represent a constant 0 that is used to specify 
absolute constraints such as the release time and the deadline constraints. In 
the figure, the edges connected by © are semi-exclusive-ORed edges. 

7The full notation would be G(sa)(V, E). But, if no confusion is caused, G(sa) will be used 
in this chapter. 
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Figure 14: Constraint Graph for T1,2 

Note that there may exist only one edge from one node to another from the 
uniqueness of inequality in the constraint set. For example, if there are two 
constraints vi - v2 < c\ and vi - v2 < c2 in C, then one of them is redundant. 
Therefore, we can denote an edge from vi to v2 in a constraint graph as vi —>■ v2 

without its weight specified. Also, note that any edge from /,• to s, is semi- 
exclusive-ORed to any edge from s; to ft. That is, even if any of these two 
edges is created from another constraint in C rather than from the minimum or 
maximum execution time constraint, they are semi-exclusive-ORed. 

The elimination algorithm of a node fa from a graph G(fa) is presented 
next. 

Algorithm 1 (Elimination of fa from a Graph G{fa)) Elimination of fa 

from G(fa) is performed by the following algorithm. 

1. For each edge pair, < y ^ fa,fa -^ sa >, that are not semi-exclusive- 
ORed in G(fa): 

• create an edge y wi_^2 Sa 

(a) Ify = sa and wi + w2 < 0, then return False.8 

(b) Ify = sa and wi + w2 > 0, then remove this edge.9 

(c) If there already exists an edge y -^-> sa before creating y W1+W2 

sa,  then the edge with less weight remains,  while the other is 
removed. 

2. For each edge pair, < sa -^-* 
exclusive-ORed in G(fa): 

fa, fa —► z >, z ^ sa, that are not semi- 

J 1 W1+W2 •  create an edge sa   —►   z. 

This is because j/-j/ = 0<«;1+u)2<0isa contradiction. 
This is because y — y — 0 < t^ + u>2 is a tautology. 
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(a) If there already exists an edge sa -^—► z before creating sa 
wi_^2 z> 

then the edge with less weight remains, while the other is re- 
moved. 

3. Set V = V — {fa} and remove all edges to or from fa in G(fa). 

Let Elim(G(fa),fa) denote a new graph created after eliminating fa from 
the graph G(fa) according to Algorithm 1 in case False is not found. In [3] it 
is shown that Elim(G(fa), fa) is equivalent to the original graph G{fa). 

Next, we show how a node corresponding to an existential quantifier sa may 
be eliminated from the graph G(sa). 

Algorithm 2 (Elimination of sa from a Graph G(sa)) Elimination of sa 

from G(sa) is performed by the following algorithm. 

1. For each edge pair, < y —*■► sa,sa -^ z >, in G(sa): 

•  create an edge y   —►   z. 

(a) If y = z and w± + u>2 < 0, then return False. 
(b) If y = z and w\ + u>2 > 0, then remove this edge. 

(c) If there already exists an edge y —► z before creating y WJ_J£2 z> 

then the edge with less weight remains, while the other is re- 
moved. 

2. Set V = V — {sa} and remove all edges to or from sa in G(sa). 

Similarly, let Elim(G(sa),sa) denote a new graph created after eliminating 
sa from the graph G(sa) according to Algorithm 2 in case False is not found. In 
[3] it is shown that Elim(G(sa),sa) is equivalent to the original graph G(sa). 

The elimination process of nodes, fa and sa, from the graph G{fa) can be 
viewed as preserving the connectivity between any two nodes in {«o,si,/i,.. .,sa-i,/a-i} 
through fa and sa in G(fa)- That is, if there exists any path from y to z only 
through sa and fa in G(fa), then a new edge from y to z is created to maintain 
the connectivity from y to z even after fa and sa are eliminated. 

Figure 15 shows a graph and its node elimination processes for sched1'2 that 
is derived from T1,2. 

The necessay condition for Sched to be true is the existence of a negative 
weight cycle in the constraint graph   [3]. 

B.4.2     Off-line component 

In this section, a 4./V-node graph, called basis graph, is obtained to which we 
can cyclically apply variable elimination algorithm without explicitly obtaining 

210 



Figure 15: Elimination of /f and s\ from V 1,2 

a large constraint graph Gl'k{f%) for large k. That is, by recursively applying 
variable elimination algorithm to this smaller graph, it can be decided whether 
the created edge set sequence, tf1'*^), j = k,k - 1,..., will converge or not. 

Definition 6 (Basis Graph) A basis graph Gb(Vb,Eh) is defined as a sub- 
graph ofGl'2{f2

N) as follows.10 

1. Vb — Vj;i U Vj,2 U {VQ} where: 

Vb,2 = {slfl...,S2
N,fN} 

VM = {v | 3(w — u V u — u) € G1'2{fN) A u € H,2 A v # v0} 

2. All edges in G1'2(fji) connecting any two nodes in Vt are included into 
Eh. 

"G1'2^) is found from r1- 
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Then, the variable elimination process for a graph G1,k(f^) can be trans- 
formed into an equivalent one by using a basis graph as follows: 

Algorithm 3  Cyclic algorithm to obtain Gl'k{f"^). 

• Input: k, Basis Graph Gb(Vb,Eb) 

• Output: Gl>kUl) 

1. Initialize i = 1. 

2. Initialize Gjn(Vb, E\n) = Gb(Vb,Eb). 

3. From i—\ to i — k — 2 repeat the following: 

(a) Eliminate, from G'in(Vb, E\n), the nodes of Vbi2 by alternately using 
Algorithm 1 and 2. 

(b) //False is returned from Algorithm 1 or 2, then return False. 

(c) Let Gl
0Ui{Vbti U {v0},E'oui) denote the resulting graph. 

(d) Ifi>2 and Giut(Vbyl U {v0}, E?mt) = G^(^,i U {V0}, &-}), then 
return G\n{Vb)E\n). 

(e) LetGit1(Vi,E
i

i+
l) = Gb(Vb,Eb) 

(f) For each edge vi ^4 v2 in G'0Uf(VM U {v0}, £«ui), 

i. If vi ^ v0 and v2 ^ v0,     add an edge <7(i)(vi) —^ g(i)(v2) to 

G%\Vb,E%1). 

ii. Ifvi = v0,     add an edge fif(i)(«i) '"^  9(i){v2) to G]+l(Vb, E
l£l). 

iii. Ifv2 = v0,      add an edge ff(i)(^i) "^   9{i)(v2) to Gl£l{Vb, E}^1). 

(g) Set i = i + 1. 

At step 3 - (d) the graph G\n{Vb, E\n) is returned. This graph can be shown 
to be equal to G1,k(fff) [3]. Once we find homogeneous created edge sets on 
Vb i U {vo} at step 3 — (d),asymptotic parametric bound functions for job start 
times can be found from the graph G1,k(f^f). From this graph the variables 
in the sequence < ffj, s^,..., fl, s\ > are eliminated to obtain the parametric 
bound functions for each sf, 1 < i < N. During this elimination process, the 
weights of edges connected to or from vo have to be modified appropriately to 
reflect scheduling window index j > 2 as well as the node index of the graph. 
For example, 

• if an edge «o —* s? is obtained after eliminating < f]if,s%,..., f? >, 
then a formula s\ < w + (j — 2)L must be used in deriving asymptotic 
parametric bound functions for s^. 
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• if an edge s2 -^ v0 is obtained after eliminating < fJf,s2
N,...,ff >, 

then a formula —w + (j - 2)L < s^ must be used in deriving asymptotic 
parametric bound functions for s\. 

• if an edge s\ -^ s2, is obtained after eliminating < /^, sjy,..., f2 >, then 
a formula s] — s(_1 < u; must be used in deriving asymptotic parametric 
bound functions for s]. 

After obtaining asymptotic parametric bound functions for s{, 2 < j, we can 
also find parametric bound functions for T1 by eliminating nodes from Gl'k(f^). 

The time complexity of the off-line scheduler is 0(n2N3) where n is the 
number of jobs in a scheduling window that have relative timing constraints 
with jobs in the next scheduling window, and N is the number of jobs in each 
scheduling window [3]. 

B.5    On-line Dispatcher 

The on-line dispatcher of the scheduler processes the information transfered to it 
from the off-line module, processes them to create the run-time data structures 
that are used in the process of determining the dispatch time for the different 
task instances. The Dispatcher can also determine the schedulability of a new 
aperiodic real-time task introduced to the system at run-time. The is done 
by moving task instances around in accordance with their parametric functions 
to preserve total schedulability. The algorithm to insert an aperiodic task at 
run-time is described in   [3]. 

This section describes the data structures used by the on-line component, 
and then explain the use of these data structures to handle the task dispatching 
process. 

B.5.1     Run-time data structures 

Scheduling information needed for the dispatching process are transfered to 
the on-line component by means of a file written by the off-line component. 
This information include task descriptions, relative timing constraints in the 
form of parametric functions description used to determine the minimum and 
maximum bounds on the execution start times for the task instances. Run-time 
information is stored in the form of a calendar of the tasks and their timing 
properties. The Dynamic Calendar has two main components: 

Dependency graph shown in Figure   16, it is represented as a list of tasks 
that are active at the current time each node in the list contains 

• Task ID 
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Figure 16: Dependency Graph 

• A linked list of the task instance profiles for that task, each of the 
task-instance profiles contains the following information: 

— Instance ID 

— Maximum execution time (WCET) 

— Activation counter that describes the number of life cycles of the 
task that this instance is going to remain active in 

— Instance functions, a list of parametric functions, each containing 
a pointer to function code, a list of the function parameters, 
and an Evaluation counter for the unresolved parameters in the 
function. 

— Result lists, which are lists of pointers (Evaluation pointers) to 
the locations of parameters for the parametric function of other 
task instances, these pointers indicate that values from this task 
instance are the actual parameters for the formal parameters in 
the other task instance functions. A separate list is maintained 
for each value to be propagated. 

Time ordered list A time ordered list of task instances is maintained by the 
run-time module, its entries represent task instances that the run-time 
module have full knowledge about their execution profile, that is the pa- 
rameters to their parametric functions are all satisfied and the functions 
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are evaluated to yield an absolute time to start the execution of the task 
instance. Entries in the TOL consist of the absolute minimum and maxi- 
mum times that this task instance can start its execution. It also include 
a pointer to the task instance profile in the dependency graph. Entries in 
this list are ordered according to their earliest starting times. 

B.5.2     Run-time execution model 

The dispatcher propagates parameters of the parametric functions, and dis- 
patches the correct task instance according the calendar generated by the off-line 
component. The run-time module starts by processing the Calendar informa- 
tion passed by the off-line component in the form of parametric functions, the 
scheduling information is stored at run time in the dependency graph. The TOL 
is initialized with one task instance, which is the task marked by the off-line 
scheduler to be executed first, and its execution time is not dependent on time 
values generated by the other task instances. Task execution phase follows the 
procedure described next. 

Dispatch the first task instance in the TOL, and start executing it in the 
earliest possible time between its minimum and maximum start times. The 
kernel schedules an interrupt at the end of the WCET of that task instance 
in order to be able to gain control and maintain the schedule of the remaining 
tasks execution. 

After the current task instance finishes execution, kernel gains control again, 
it starts by propagating the timing information generated from the finished task 
instance to all the function parameters that are dependent on these values using 
the results lists of these values in the task instance profile. If the unresolved 
parameters counter in any one of these task instances reaches zero, this means 
that the parameters to its functions are all satisfied and functions can be eval- 
uated at this point. The absolute boundaries on the starting times for these 
instances are calculated, and the instances are inserted in the TOL, their coun- 
ters are reset to their original values in the instance profiles. The dispatcher also 
maintains the information in the task-instance profiles regarding the number of 
cycles the instance is going to be active in, this counter is decremented every 
time the instance is executed. If this counter was initialized with a negative 
value, this will cause the dispatcher to run this task periodically for as long as 
the operating system kernel is running this particular application. The on line 
dispatcher time complexity is O(N). 

The main steps for the On-line dispatcher is shown in the following algo- 
rithm. 
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Algorithm 4  On-Line Dispatcher. 

1. Load the dynamic calendar by tasks parametric functions. 

2. Insert the first task instance in the TOL. 

3. while (TOL not empty) { 

(a) Get first task instance in TOL (Itop)- 

(b) Schedule a time interrupt to occur immediately after stop+WCET(It0p) 

(c) Yield control to Itop ■ 

(d) When Itop finishes or the scheduled interrupt occurs 

• Stop the execution of Itop if H is still running. 
• Record its finishing time fjio . 

• Substitute the start time s<op in all items in its evaluation list. 

• Decrement the evaluation counters of all the elements on the 
evaluation list of Stop- 

• Substitute the finish time ftop in all items in its evaluation list. 

• Decrement the evaluation counters of all the elements on the 
evaluation list of ftop. 

• // the evaluation counters of any instance reaches zero, then 

— insert this instance in TOL. 

— Decrement its activation counter by 1, if it reaches 0,  the 
instance is removed from the dependency graph. 

— Restore all its evaluation counters to their initial values. 

} 

B.6    Conclusion 

In this paper, a new model is developed for dynamic time-based scheduling 
scheme. Using this scheduling model, it is possible to schedule more general 
tasks such as periodic, or aperiodic. Tasks can execute in any general pattern 
other than strict periodic, for instance the system can schedule periodic tasks 
with variable inter-instance periods. The tasks scheduled by the system at pre- 
runtime must show a repeated pattern in order for the scheduler to be able to 
constitute the scheduling windows of the given tasks. The timing constraints 
satisfiable by the system include the following: 

• Ready time 

• Deadline time 

• Communication constraints 
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• Mutual exclusion constraints 

• Together constrains 

• Relative timing constraints 

Some of the benefits that can be achieved by the given model can be sum- 
marized in the following main points: 

• Ability to add aperiodic tasks at run-time. 

• Ability to schedule more general tasks. 

• Variation of the run-time behavior depending on values generated by exe- 
cuting tasks, or system state to change the parametric functions calculated 
by the off-line component at pre-runtime. 

• Using parametric function makes use of the slack time to run non-real-time 
tasks, or to finish the schedule as early as feasible. 

The proposed model also gives some possibilities of fault tolerance by allow- 
ing the operating system kernel to gain control, or update the different functions 
parameters in case of failure. Some of the fault tolerance abilities that are given 
by the system are: 

• Substitution of minimum values for parameters in case of failure of task 
instances generating the parameter value to keep the feasible total sched- 
ule. 

• Using the maximum execution time for the task instances to generate a 
time interrupt, should the task instance execute more than the max time 
allowed for it. 

As future extensions to this model, different things can be further extended to 
give more generality and flexibility in the scheduling capabilities of the system. 
Some of these extensions are: 

• The dynamic calendar functions can be parameterized by values other 
than just the start or finish times of previous tasks, such as system state 
variables. This can give more capabilities to support inter-task dependen- 
cies, and fault tolerance. 

• The scheduling model can be extended to support multi-processor sys- 
tems. To do this, several issues have to be considered, such as what kind 
of information have to be sent out to other nodes, and how parametric 
functions can be found. 
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In this paper it is also assumed that a total ordering among tasks is found 
at pre-runtime by an off-line scheduler. Previous work by Cheng et al. 
[2] and Mok et al. [9] use a heuristic approach called smallest latest start 
time first to schedule task instances with relative constraints. However, 
their heuristics don't fully reflect the relative timing constraints. Improved 
heuristic functions may be developed if the constraint graph structure is 
utilized. 

The total order and dynamic calendar were both calculated at pre-runtime. 
Aperiodic real-time time tasks can also be adder to the dynamic calendar 
at run-time [3]. The addition of hard real-time periodic tasks at run-time 
may be further studied to find the way parametric functions are to be 
changed in that case. 
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